Rezumat
CZU 621.315.592
https://doi.org/10.52577/eom.2024.60.2.50
This paper presents the results of studies of the electrophysical, photoelectric, and magnetic properties of silicon samples doped by diffusion of germanium impurity atoms. It has been shown that impurity germanium atoms form in silicon binary compounds of the GexSi1-x type, the concentration of which varies with the depth of the original silicon. The developed diffusion technology of silicon doping with impurity germanium atoms made it possible to obtain a material with different concentrations of impurity germanium atoms, resistivity, and the type of conductivity. The optimal electrophysical parameters of the obtained samples for studying the electrophysical parameters and the magnetic properties were determined, which made it possible to show the possibilities of creating new types of sensors and devices for semiconductor electronics. The presented studies make it possible to develop respective directions in the field of materials science with magnetic properties and the creation of efficient photovoltaic cells for photoenergetics.
Keywords: silicon, germanium, concentration, impurity, spin, magnetic sensitivity, binary compound, diffusion.