Calculated Estimation of the Displacement Current Density and its Influence on Electromagnetic Processes in a Metallic Conductor with an Alternating Current

Rezumat

UDC 621.3.01: 621.313

 

https://doi.org/10.52577/eom.2023.59.2.35

 

The results of approximate calculations of the density δs(t) of the displacement current is(t) and the estimation of its influence on electromagnetic processes in the homogeneous non-magnetic metals (alloys) of a continuous cylindrical conductor of finite sizes (radius r0 and length l0>>r0) with an electric variable (pulse) axial current i0(t) of different amplitude and temporal parameters. The theoretical data obtained for the quantized (discrete) spatio-temporal distributions of standing longitudinal waves (half waves) of the displacement current is(t) at density δs(t) in the indicated conductor leads to the following conclusion. In the electrodynamic calculations of variable (pulse) electromagnetic processes that occur both in this conductor and in an electric circuit in it, it is possible to neglect the influence of longitudinal waves (half waves) of the displacement current is(t) at density δs(t) and of the displacement current is(t) itself at the practical field calculations. It is found that the waves (half waves) of the displacement current is(t) at density δs(t) and of the displacement current is(t) maintain solenoidality of the total electric current of ii(t) = i0(t)+is(t) in the conductor and its circuit. The calculations has shown that the displacement current is(t) and its density δs(t) in a non-magnetic metal (alloy) of the studied conductor do not lead to thermal (joule) energy losses.

 

Keywords: non-magnetic metallic conductor, electric alternating current, displacement current, displacement current density, standing electromagnetic waves, thermal energy losses, calculation.

PDF (Русский)