Rezumat
CZU 532:537
DOI https://doi.org/10.52577/eom.2022.58.1.85
The analysis and generalization of the results of studies of high-voltage electrochemical explosions (HVECHE) proceeding under various conditions, driven by special aspects and needs of the existing HVECHE based pulse-discharge technologies, was carried out. A methodology to calculate combined energy sources is proposed in relation to the needs of various discharge-pulse technologies using a high-voltage electrochemical explosion. Based on the analysis of the results of experimental studies, the advantage of using a high-voltage electrochemical explosion with a controlled input of electrical energy into the discharge channel was substantiated. An algorithm was developed to calculate the parameters of a combined electric-discharge source of a controlled HVECHE and the required mass of the exothermic composition which provides the energy characteristics specified by a specific discharge-pulse technology. The results of testing the developed calculation algorithm are presented confirming the possibility of its use for engineering calculations of combined power sources with a controlled input of electrical energy into the discharge channel.
Keywords: high-voltage electrochemical explosion, exothermic composition, pulse current generator, controlled input of energy, pulse-discharge technologies, calculation algorithm, specific electrical energy, efficiency of energy conversion.