Electroformed Coatings on Difficult Profiled Models from Conductive and Nonconductive Plastics

Rezumat

CZU 669:673.4:678.5-1

 

DOI  https://doi.org/10.5281/zenodo.3970459

 

The purpose of the work was to study a possibility of using composite conductive plastics in the manufacture of complex profiles made by 3D prototyping for models in electroforming. An investigation was made of the dissipating ability of the electrolyte by current and by metal using a Mohler slot cell, a visual study of the samples, determination of the weight and thickness of the deposited metal in various parts of the difficult profiled surface of samples of both conductive and non-conductive plastics. A possibility of manufacturing difficult profiled models for electroforming from both conductive and nonconductive plastics by 3D prototyping is shown. The structure of the conductive plastic should ensure uniformity of the electrical resistance of the material in all directions. The weight and size features of models of conductive plastics for electroplating are revealed. The optimal parameters of the process of electrochemical formation of galvanoplastic copper deposits from a sulfate electrolyte are determined. As a result of the comparative analysis, the advantages and disadvantages of using models of both conductive and non-conductive plastics are revealed. The features of the process of the formation of galvanic coatings in both cases are determined. It is shown that in the process of electroforming, it is necessary to take into account a high adhesion of the deposited metal to the surface of models of conductive plastic.

 

Keywords: electroforming, difficult profiled models from conductive and nonconductive plastics, 3D prototyping, dissipating ability of electrolyte, copper sulfate electrolyte, preliminary metallization (covering) of the surface.

PDF (Русский)