Polymer Composite Pipes Curing Using Microwave Radiation

Rezumat

CZU 621.365.58

 

DOI  https://doi.org/10.5281/zenodo.1053783

 

Theoretical and experimental results of polymer composite pipes curing using the energy of electro-magnetic fields of super-high frequencies as a source of heat are presented. The advantages of the microwave method of heat treatment of pipes made of composite materials are compared with those of traditional methods. The results of theoretical studies on the accelerated curing of polymer composite pipes in a microwave type setup in a continuous mode are presented. A conveyor microwave type setup for the composite pipes polymerization with an outer diameter of 300 mm, a thickness of 15 mm at a temperature of +200°C on the electromagnetic field frequency oscillations of 2450 MHz and a power output of 9.6 kW was developed. A set allows reducing the energy consumption for the technological process of accelerated curing of pipes made of composite materials, increase productivity and improve working conditions of the staff. The essential expressions and calculation results of the temperature distribution along the thickness of a pipe made of a composite material are presented. The heating of the pipe from +20°C to +200°C, weight 54 kg, lasted for 15 minutes. The temperature deviation from the nominal value of the temperature on the outer surface of the pipe is absent, and that through the thickness of the pipe does not exceed 5°C. As a result, the research shows the prospects of using microwave radiation for techno-logical processes involving rapid curing of pipes made of composite materials. Currently work is underway to study the strength characteristics of polymer tubes, assuming that uniform heating of the tubes leads to the absence of internal stresses and other defects of the material structure of the tubes.

 

Keywords: microwave technology, electrodynamic system, source of microwave energy, temperature distribution, composite material.

PDF (Русский)