Technological Aspects of Estimation of Temperature in Metals When Forming Coatings by Heterophase Transfer and Microarc Oxidation

Abstract

UDC 62-408.2:519.85


DOI  https://doi.org/10.5281/zenodo.4455849

 

The article considers the technological aspects of temperature estimation in an aluminum sample with a possible formation of an aluminum-containing coating on its surface using a combined technology of cold gas dynamic deposition and microarc oxidation. Experimental studies results of the temperature flow distribution over the thickness of the metal surface under cold gas-dynamic spraying are presented. The temperature of the heat flow during spraying varied from 200ºC to 600°C. It was found that the operating temperature of an aluminum substrate with a thickness of 8 mm at standard thermal deposition modes does not exceed 120°C, which is one of the advantages of the used here technology over the known methods of plasma and magnetron sputtering. The estimation of the temperature effect of microarc oxidation on the surface of a sample depending on various technological modes is given. It was found that the surface temperature of the sample oxidized in an alkaline electrolyte with liquid glass additives at current densities of 20–30 A/dm2 does not exceed 90°C, which shows the absence of thermal transformations.

 

Keywords: microarc oxidation, heterophase transfer method, cold gas-dynamic deposition, oxide-ceramic layer, combined technology.

PDF (Русский)