Application of Electrospark Deposition Technology and Electrode Materials Modified by Self-Propagating High-Temperature Synthesis to Improve Resistance of Hot-Rolling Mill Forming Rolls. <br>Part 2. Structure and Properties of Coatings Formed

Abstract

UDC 621.9.048.4

 

DOI  https://doi.org/10.5281/zenodo.2629552

 

Electrospark deposition of coatings onto the SPKhN-60 white cast iron samples involved two stages. A barrier sublayer was deposited at the first stage and a multi-functional protective coating was deposited at the second stage. The effect of the sublayer on coating properties upon application of STIM-40NAOKn (TiC–NiAl+ZrO2nano) and STIM-11OKn (TiB2–NiAl+ZrO2nano) electrodes was studied. The coating structures were investigated. The grain size of the refractory phase was found to be smaller than 100 nm. Application of double-layer coatings increased wear-and heat resistances of white cast iron samples. Pre-deposition of a nickel sublayer enhanced the heat resistance of STIM-11OKn coating over eightfold. Full-scale tests of the rolls strengthened using SHS electrodes were carried out and positive results were obtained.

 

Keywords: electrospark deposition, self-propagating high-temperature synthesis, white cast iron, sublayer, nanoscale powder, hardness, heat resistance, wear resistance, rolls.

PDF (Русский)