On Regularities of Realization of Electrostatic Instability on Conductive Charged Jet Moving Relative to Material Environment

Abstract

UDC 77.051.15:621.384.8

 

DOOI  https://doi.org/10.5281/zenodo.2551209

 

Under study were increments of instability of the capillary waves corresponding to the bending and deformative mode on the surfaces of a conductive charged cylindrical jet of the ideal incompressible liquid moving with a constant speed relative to ideal incompressible material dielectric environment. It is shown that though flexural and deformation waves are the last to be excited by the last, in comparison with axisymmetric and bending waves, their increment turns to be the biggest. The entire phenomenological picture of the realization of instability of a jet in the mode of "the branching jets" takes shape under a sequence of excitement of capillary waves of various symmetry. It is shown that the viscosity of a liquid plays an essential role in the realization of the mode of branching jets.

 

Keywords: charged jet, not axisymmetric capillary waves, branching jets.

PDF (Русский)