Effect of Corona Discharge on the Structure and Photoluminescence Properties of Nanocomposites Based on Polypropylene and Zirconium Dioxide Nanoparticles

Abstract

UDC 537.226.83

 

DOI  https://doi.org/10.5281/zenodo.1053473

 

 

The influence of corona discharge on the structure and photoluminescence properties of nanocomposites based on polypropylene (PP) and zirconium dioxide (ZrO2) nanoparticles has been studied. It is shown that after the polarization under the influence of corona discharge the room-mean-square (rms) surface roughness of the polarized sample was for 40–60 nm whereas for unpolarized compositions it was 80–120 nm, i.e. the grinding of the structural element took place. It was found that after the polarization, the intensity of photoluminescence increases depending on the concentration of charges. In order to determine the cause of the increase in the intensity of the luminescence by the thermostimulated depolarization method, the stored charge at the interface between the components of the nanocomposites was studied. It has been shown that the polarization process leads to the accumulation of a sufficiently large amount of electric charges at the interface between the components of the nanocomposite PP + ZrO2. The intensity of the internal local field of charges was calculated and it was found that due to the border charges a high internal local field is created. As a result, the luminescence intensity rises when the value of the polarization goes up.

 

Keyword: photoluminescence, corona discharge, nanocomposite, polypropylene.

 

PDF (Русский)