Heat Transfer Peculiarities at Anode Plasma Electrolytic Treatment of Cylindrical Pieces

Abstract

UDC 621.785.53; 621.3.035.183

 

Heat transfer in a three-phase electrochemical system consisting of a metal cylindrical anode (sample part), a vapor-gas envelope and an electrolyte solution is considered. The purpose of the study is to determine the effect of the length of the sample part, contacted with the electrolyte, on the distribution of heating characteristics on its surface. It is established that the increase of the length of the part of the anode submerged in the electrolyte causes the decreasing of the average current density, reduction of the vertical current density gradient, and the decrease of the heat flux per unit area from the envelope to the sample. A model is proposed so as to calculate the stationary cylindrical anode temperature and the current in the system, with the removal of the convective heat flux from the anode portion protruded above the electrolyte into the atmosphere. The influence of the electrolyte flow along the sample on its temperature and the average current density in the system is determined and accounted for by the variations of the vapor-gas envelope thickness.

 

Keywords: plasma electrolytic deposition, temperature distribution, heat fluxes per unit area.

PDF (Русский)