Effects of Different Treatment of TiO<sub>2</sub> Electrodes on Photovoltaic Characteristics of Dye-Sensitized Solar Cells

Abstract

UDC 621.383

 

Using the pre-treatment of the working photoelectrode and the admixture light-scattering layer can ameliorate the performance of TiO2 dye-sensitized solar cells (DSSCs). TiCl4 treatments on TiO2 electrodes improve the adhesion and mechanical strength of the TiO2 layer. The HNO3 treatment significantly enhances the dispersion of TiO2 particles and increases the surface area and porosity of TiO2 films. The scattering layer formed by admixing both nanometer-sized and submicron-sized TiO2 particles greatly enhances the DSSC performance. The light absorption is considerably better in TiO2 films with a mixture of large and small particles. This mixture is capable of efficient light-scattering while simultaneously providing a larger surface area for effective dye adsorption. Each of these technologies for the TiO2 film fabrication has a significant influence on the overall photovoltaic parameters of DSSCs, resulting in improvements in energy conversion performance.

 

Keywords: dye-sensitized solar cells, TiCl4 treatment, HNO3 treatment, submicron-sized TiO2, scattering layers.

PDF