ОСОБЕННОСТИ ЭЛЕКТРОДНЫХ ПРОЦЕССОВ НА ПОВЕРХНОСТИ СТАЛИ С ИОННО-ПЛАЗМЕННЫМИ ПОКРЫТИЯМИ ИЗ НИТРИДА ТИТАНА

Одесская национальная академия пищевых технологий, ул. Канатная, 112, г. Одесса, 65039, Украина, <u>kapitoskay@rambler.ru</u>

Введение

Ионно-плазменные покрытия из нитрида титана и их аналогов в последние 25–30 лет получили широкое распространение для повышения износостойкости деталей машин, а также работоспособности и долговечности металлорежущего инструмента [1–4].

В 80–90-е годы XX столетия появились первые работы, посвященные изучению возможностей использования покрытий из нитрида титана для защиты малоуглеродистых сталей от коррозии [5–7]. Отмечено, что ионно-плазменные покрытия из TiN по своим коррозионно-электрохимическим параметрам во многих агрессивных средах являются катодными. Это в свою очередь определяет общую закономерность в ожидаемом характере коррозионно-электрохимического поведения покрытий, а именно: коррозионные разрушения стали локализованы в порах покрытия, а само покрытие выступает в роли слабо поляризуемого катода [8–10], механизм разрушения определяется пористостью покрытий [11, 12], размерами пор [13–15] и соотношением "диаметр пор – толщина покрытия" [10, 15].

Несмотря на определенные успехи в нанесении катодных покрытий, остается открытым вопрос о взаимосвязи режимов нанесения покрытий и их функциональных характеристик (коррозионно-электрохимических и защитных).

Методика эксперимента

Цель настоящей работы – изучение влияния параметров нанесения покрытий из TiN на их защитные свойства и коррозионно-электрохимические характеристики в некоторых нейтральных и кислых водных растворах (водопроводная вода, 3% раствор NaCl, водные растворы H₂SO₄ и HNO₃ различной степени разбавления). Материал подложки – стали 08кп и У8А, коррозионно-электрохимические характеристики которых достаточно близки; поэтому характер коррозионных разрушений будет определяться только материалом покрытия [8, 10, 13, 16].

Нанесение покрытий из TiN осуществляли на установке "Булат–3Т". Исходным материалом электродуговых испарителей служил сплав ВТ1–0. Регулируемыми параметрами были давление азота в вакуумной камере *P*, ускоряющее напряжение на подложке *U* и ток дуги испарителя *I*. Диапазоны варьирования каждого параметра приведены в табл. 1. При обработке результатов наблюдений применялся метод планирования эксперимента и статистической обработки данных, изложенный в [17]. Применительно к задачам изучения защитных свойств конденсированных пленок и покрытий обоснованность подобного подхода приведена в работах [10, 14–16].

Коррозионно-электрохимическое поведение покрытий из TiN оценивалось по результатам потенциодинамических исследований. Исследованы потенциодинамические кривые при помощи потенциостата ПИ-50-1. Отчет данных проводили через 10–12 минут после погружения образцов в исследуемый раствор при скорости наложения потенциала 12 мВ/мин. Образцы для исследований получены при фиксированных параметрах I = 100 A, U = 220 B; T = 770-820 K, варьируемыми параметрами были давление в вакуумной камере P и толщина покрытия h. При расчете параметров процесса электрохимической коррозии использовались метод линейной поляризации и уравнение Стерна-Гири [18]. Методика проведения подобных исследований применительно к конденсированным системам впервые описана в работе [16] и получила дальнейшее развитие в работах [10, 15, 19, 20].

[©] Костржицкий А.И., Чебан Т.В., Береговая О.М., Электронная обработка материалов, 2008, № 3, С. 17–24.

Таблица 1. Уровни факторов и интервалы варьирования

Наименование и обо-	Код факто-	Уровни варьирования		MUTOPPOH POPLUPOPOUUG 20	
значение факторов	ров	+ 1	- 1	Интервал варьирования, 28	
Ускоряющее напряже- ние на подложке <i>U</i> _П , В	X_1	220	50	170	
Давление азота в камере <i>Р</i> , Па	X ₂	0,665	0,0665	0,5985	
Ток дуги пушки I, А	X ₃	120	80	40	

Результаты эксперимента и их обсуждение

Электродные потенциалы образцов стали с покрытиями из TiN изменяются во времени. Наиболее сильное влияние на характер временного изменения электродных потенциалов образцов стали с покрытиями из TiN оказывает толщина покрытий. Изменение параметров осаждения (давления азота в камере P, тока дуги пушки I, температуры конденсации T_K и ускоряющего напряжения на подложке U_{II}) в диапазоне их оптимальных значений сказывается на характере зависимости $\varphi = f(\tau)$ значительно слабее. Параметры T_K , I, U оказывают определенное влияние на абсолютные значения электродных потенциалов данных систем (табл. 2).

Типичный характер кривых $\varphi = f(\tau)$ в нейтральных средах (3% раствор NaCl) приведен на рис. 1 и может быть описан функцией

$$\varphi = A \cdot \tau^n, \tag{1}$$

которая является более типичной для вакуумных катодных покрытий [9, 10, 15]. Обработка данных наблюдений показала, что в диапазоне 5–120 мин кривые 3 и 4 (рис. 1) с высокой точностью (93–95%) описываются эмпирическими формулами, $\varphi = -20 \cdot t^{0,48}$ и $\varphi = -45 \cdot t^{0,32}$ соответственно. В диапазоне времени испытаний 120–420 мин характер временной зависимости $\varphi = f(t)$ близок к линейному. В окончательном виде математическая запись зависимостей $\varphi = f(\tau)$ в данной среде имеет вид

a) тонкие покрытия
$$\varphi = \begin{cases} -45\tau^{0.32} \quad (5-120 \text{ мин}), \\ -180(1+3\cdot10^{-3}\tau) \quad (120-420 \text{ мин}); \end{cases}$$
 (2)

б) толстые покрытия
$$\varphi = \begin{cases} -20\tau^{0.48} (5-120 \text{ мин}), \\ -220(1+2,6\cdot10^{-3}\tau) (120-420 \text{ мин}). \end{cases}$$
 (3)

Рис. 1. Изменение во времени электродных потенциалов образцов стали с покрытиями из нитрида титана в водопроводной воде (1, 2) и в 3% растворе NaCl (3, 4). h,мкм: 1 и 3 – 7–8 (толстые покрытия), 2 и 4 – 3–8 (тонкие покрытия), $P = 0,4 \Pi a$, I = 100 A, $T_{\kappa} = 825 K$, $U_{\Pi} = 200 B$

В отсутствие агрессивных ионов в воде (кривые 1 и 2) зависимость $\varphi = f(\tau)$ в диапазоне 5–240 мин хорошо описывается линейной функцией и для исследованных покрытий имеет вид

$$\varphi = 16(1-2, 2\cdot 10^{-2}t)$$
 (тонкие покрытия), (4)

$$\varphi = 35(1 - 9 \cdot 10^{-3}t)$$
 (толстые покрытия); (5)

причем этот характер зависимости сохраняется и при дальнейшей выдержке образцов (до 10–15 часов).

Из анализа данных рис. 1 и формул (2)–(5) видно, что скорость изменения электродных потенциалов в 3% растворе NaCl в начальные моменты испытаний значительно выше, чем в отсутствие активных компонентов в растворах. В дальнейшем ситуация изменяется: в агрессивных средах практически наступает стабилизация потенциала, а в слабоактивных отмечается сдвиг потенциалов в отрицательную область с той же скоростью. В последнем случае стабилизация потенциалов наступает значительно позднее (через 15–18 часов). Основываясь на известных данных о влиянии среды на число "работающих" очагов коррозии в катодных вакуумных покрытиях [10, 15, 16], а также учитывая основные положения о взаимосвязи стационарных потенциалов с пористостью покрытий [12, 13], можно утверждать, что установленные экспериментально различия зависимостей $\varphi = f(\tau)$ (рис. 1, формулы (2)–(5)) свидетельствуют как о различном числе очагов коррозии в порах катодных вакуумных покрытий в различных агрессивных средах, так и о различной скорости нарастания во времени их числа. Последнее обстоятельство обусловлено, по-видимому, влиянием геометрических параметров пор на характер процессов в системе "покрытие-подложка". Физико-химическая ситуация в данной системе может быть оценена с позиций, предложенных в [9].

В кислых средах зависимости $\varphi = f(\tau)$ хорошо описываются линейными функциями. В частности, в 3% растворе HNO₃ можно выделить четыре характерные области на кривых зависимости $\varphi = f(\tau)$. В самом начале испытаний (до 10 мин) вне зависимости от условий осаждения для всех образцов отмечаются положительные значения потенциалов со слабым сдвигом в отрицательную область (рис. 2). Исключение составляют образцы, полученные при низком давлении азота (рис. 2, кривые 3 и 4). Второй временной промежуток испытаний (от 10 минут до 1,5 часа) характеризуется резким сдвигом потенциалов в область отрицательных значений. Выделить какие-либо характерные зависимости скорости изменения φ от режимов осаждения не представляется возможным, но все зависимости описываются линейными функциями.

В промежутке 2–6 часов существует зависимость электродных потенциалов от ускоряющего напряжения на подложке U_{II} . Так, для $U_{II} = 50$ В и $U_{II} = 220$ В временные зависимости описываются уравнениями

$$\varphi = -300 - 12 \tau (U_{\Pi} = 50 \text{ B});$$
(6)
$$\varphi = -250 - 15 \tau (U_{\Pi} = 220 \text{ B}).$$
(7)

Рис. 2. Изменение во времени электродных потенциалов стали с покрытиями из нитрида титана в 3% растворе азотной кислоты. Кривые 1-8 соответствуют режимам осаждения в табл. 2, кривая 9 – средним режимам (P = 0,13 Па, I = 100 A, $U_{\Pi} = 135$ B)

В четвертом временном промежутке (6–24 часа) закономерности, определяемые формулами (6) и (7), приобретают вид

$$\varphi = -375 - 0.5 t (U_{\Pi} = 50 \text{ B}); \tag{8}$$

$$\varphi = -325 - 2.0 t (U_{\Pi} = 220 \text{ B}).$$
(9)

Различия в абсолютных значениях электродных потенциалов, а также в скорости изменения во времени потенциалов образцов, полученных при различных U_{II} , свидетельствуют о влиянии режимов осаждения на характер протекания электродных процессов в порах покрытий. Отметим, что в растворе HNO₃ влияние *I* и *P* на зависимость $\varphi = f(t)$ выражена слабо.

Мы использовали метод планирования эксперимента с целью получения уравнения регрессии, связывающего такой электрохимический параметр, как потенциал, либо скорость изменения потенциала с соответствующими факторами. Применено планирование первого порядка с варьированием факторов на двух уровнях [17]. С учетом специфики нанесения покрытий на установке "Булат–3Т" варьируемыми параметрами были выбраны U_{II} , P и I, уровни варьирования и интервалы варьирования которых приведены в табл. 1.

Уравнение регрессии в нашем случае имеет вид

$$Y = b_0 + \sum b_i \cdot x_i + \sum b_{ij} \cdot x_i \cdot x_j, \qquad (10)$$

где $Y = \varphi$; b_0 – свободный член уравнения регрессий; b_i – линейные коэффициенты регрессии; b_{ij} – коэффициенты двойного взаимодействия факторов; x_i – кодированные значения факторов, определяемые следующим образом:

$$x_{i} = \frac{x_{i} - x_{i0}}{\varepsilon}; \ x_{i0} = \frac{x_{i\max} - x_{i\min}}{2};$$
(11)

 x_i – текущее значение фактора, x_{imax} и x_{imin} – значения факторов на уровнях варьирования. Матрица полного факторного эксперимента типа 2^3 и результаты наблюдений приведены в табл. 2. Данные приведены для различных моментов времени, а статистическая обработка проводилась для конкретного времени наблюдений в соответствии с табл. 2.

На основании выполненных экспериментов можно сделать некоторые предварительные выводы о влиянии параметров осаждения на защитные свойства покрытия. С учетом значимости коэффициентов регрессии (табл. 3) отмечается определенное влияние U_{Π} на значения ϕ , причем наиболее четко это влияние проявляется при достаточной выдержке образцов в растворе (более двух часов). В начальные моменты испытаний выделить характерные закономерности в изменении ϕ от какого-либо из исследованных параметров осаждения невозможно.

После преобразования уравнений регрессии к именованному виду с учетом (11) получаем

$$\varphi = -320 - 0, 3 \cdot U_{\Pi} - 7, 2 \cdot 10^{\circ} \cdot P - 0, 52 \cdot I + 53 \cdot U_{\Pi} \cdot P + 4 \cdot 10^{-\circ} \cdot U_{\Pi} \cdot I.$$
(12)

Уравнение (12) приведено в качестве примера для t = 6 часов. Его анализ и данные табл. 2 и 3 показывают, что с возрастанием ускоряющего напряжения на подложке электродные потенциалы сдвигаются в область положительных значений (рис. 3), что является показателем повышения защитных свойств покрытий. С позиций чисто электрохимического механизма коррозии это может быть интерпретировано как снижение пористости покрытий. Вывод хорошо коррелирует с известными данными о влиянии режимов осаждения, в частности ускоряющего напряжения на пористость покрытий [5, 10].

Как следует из рис. 3, характер зависимости $\varphi = f(U_{\Pi})$ определяется и двумя другими параметрами, однако сделать окончательное заключение о природе этого влияния по результатам настоящего исследования довольно сложно.

Можно лишь предположить, что сочетание высоких значений *P* и *I* обусловливает увеличение числа ионизированных частиц реактивного газа и испаряемого металла. Это также способствует повышению стойкости покрытий и улучшению их защитных свойств. Физические процессы, характерные для выбранного способа получения покрытий, детально анализируются в литературе, например в [21].

Более достоверную информацию о влиянии параметров осаждения на защитные свойства покрытий и их коррозионно-электрохимическое поведение мы получили на основании потенциодинамических исследований и обработки поляризационных кривых по методикам, описанным выше. На специально изготовленной серии образцов проводилась оценка влияния условий испытаний на коррозионно-электрохимическое поведение покрытий из TiN на стали.

Таблица 2. Результаты исследования влияния режимов осаждения на электродные потенциалы образцов стали с покрытиями из нитрида титана

N⁰				Значения электродных потенциалов (в мВ) через t					
ОПЫ- ТОВ	X_1	X_2	X ₃	0	2 мин	10 мин	2ч	бч	24 ч
1	+	+	+	+610	+610	+595	-250	-315	-345
2	+	+	_	+525	+520	+375	-275	-340	-370
3	+	_	+	-180	-220	-250	-280	-350	-375
4	+	_	_	-205	-235	-265	-290	-340	-390
5	_	+	+	+560	+550	+540	-360	-410	-420
6	_	+	_	+580	+560	+540	-325	-370	-365
7	_	_	+	+535	+525	+480	-345	-365	-365
8	_	_	_	+570	+570	+535	-280	-370	-400

Таблица 3. Результаты расчетов коэффициентов регрессии (уравнение 10)

No otrutto	Значения коэффициентов регрессии для момента t						
л⊻опыта	0	2 мин	10 мин	2ч	б ч	24 ч	
b_0	+374	+258	+214	-300	-358	-379	
b ₁	-187	-89	-100	+27	+22	+8,75	
b ₂	+194	+98	+89	—	—	—	
b ₃	+69	+109	+128	-8,0	—	—	
b ₁₂	+186	+299	+167	+13,0	+20,0	+8,75	
b ₁₃	+21	-82	-69	+17,0	+6,75	+16,0	
b ₂₃	+9,4	+116	+138	—	—	—	

Рис. 3. Зависимость электродных потенциалов от величины ускоряющего напряжения на подложке (формула (12)). Кривые 1, 2, 3, 4 соответствуют комбинации P в табл.1: I(-1, -1), (-1, +1), (-1, +1), (+1, +1)

С учетом вышеприведенных зависимостей $\varphi = f(\tau)$ и уравнения (12) варьируемыми параметрами были давление в вакуумной камере и толщина покрытий; параметры *I*, U_{Π} и T_K во всех опытах оставались постоянными (*I* = 100 A, $U_{\Pi} = 220$ B, $T_K = 500-550$ °C).

Выборочные потенциодинамические кривые и результаты обработки экспериментальных данных приведены на рис. 4 и в табл. 4. Наилучшие защитные свойства покрытия показывают в нейтральных дехлорированных средах. Общей, но не четко выраженной тенденцией являются снижение токов коррозии и возрастание поляризационного сопротивления с увеличением толщины покрытия. Следует отметить различие в R_{Π} на образцах, полученных при различных давлениях: при высоких P

величина *R*_П, как правило, больше. Это является подтверждением высказанного ранее предположения о положительном влиянии высокого давления азота на защитные свойства покрытий.

Рис. 4. Анодные потенциодинамические поляризационные кривые стали 08кп (1) и покрытий из нитрида титана на стали (2–4) в 3% растворе серной кислоты. Номера кривых соответствуют поряд-ковым номерам опытов в табл. 4

Сопоставление численных значений параметров коррозии на одном виде покрытий по различным средам дает информацию о влиянии степени агрессивности среды на стойкость покрытий.

Зависимости $\varphi - j$ для всех толщин покрытий и режимов осаждения сходны. В начальные моменты поляризации они свидетельствуют об относительно свободном протекании анодного процесса (пологий ход кривой по отношению к оси плотности тока), с увеличением φ токи возрастают. Начиная с некоторого значения φ_{Π} образцы переходят в пассивное состояние (за исключением 3% раствора NaCl), экстремальных точек на кривых $\varphi - j$ не обнаружено. Это объясняется накоплением продуктов коррозии железа в порах покрытия и экранированием коррелирующей поверхности от раствора. В 3% растворе NaCl область пассивности на кривых анодной поляризации не обнаружена, что свидетельствует о высокой активности хлор-ионов.

Второй характерной особенностью является закономерное смещение поляризационных $\varphi - j$ кривых в зависимости от толщины покрытий (рис. 4). В области малых токов располагаются кривые, соответствующие образцам с тонкими покрытиями, причем с увеличением толщины они смещаются в область более высоких плотностей тока. При этом отмечены различные варианты взаимного расположения кривых в зависимости от среды: в растворе HNO₃ кривые *3* и *4* меняются местами, в 3% растворе NaCl располагаются очень близко. Однако общая тенденция сдвига кривых в область высоких значений *j* сохраняется. Мы объясняем этот факт проявлением механохимического механизма развития коррозионных процессов в порах катодных вакуумных покрытий, возможность реализации и условия протекания которого рассматриваются в [10, 14, 15]. Поскольку переход от электрохимического механохимического механизма коррозии стали в порах покрытий к процессу коррозионного разрушения по механохимическому механизму зависит от многих факторов и в известной степени носит случайный характер, становятся понятными некоторые отклонения в закономерностях изменения параметров коррозии, описанных выше при обсуждении данных табл. 4.

В заключение отметим еще один важный в практическом отношении факт. При получении серии образцов для проведения потенциодинамических исследований (табл. 4) их толщина задавалась временем нанесения покрытий и для пар опытов 2-5, 3-6 и 4-7 оно было одинаковым. Сопоставление численных значений по h для соответствующих пар опытов указывает на наличие определенной зависимости скорости осаждения покрытий от величины давления в камере – при низком давлении скорость осаждения выше.

Исследования влияния параметров осаждения на кинетику роста покрытий из TiN, выполнен-

ные с применением метода планирования эксперимента, показали, что в диапазоне технологически обоснованных параметров осаждения (см. табл. 1) взаимосвязь толщины покрытия с параметрами нанесения определяется эмпирической формулой

$$h = -28.1 - 2.38 \cdot 10^{-2} U_{\Pi} - 10 \, \text{lg}P + 0.295I - 6.2U_{\Pi} \, \text{lg}P + 4.24 \cdot 10^{-4} U_{\Pi} \cdot I + 8.25 \cdot 10^{-2} \, I \cdot \text{lg}P + 1.3 \cdot 10^{-4} \, U_{\Pi} \cdot I \cdot \text{lg}P,$$
(13)

откуда следует, что с возрастанием давления толщина покрытия, полученного за определенное время, снижается. Причем характер этого снижения определяется и другими факторами. Соответственно снижается и скорость осаждения. Это объясняется частичным распылением формирующегося покрытия, интенсивность которого возрастает с увеличением числа ионизированных молекул и атомов газа при повышении давления [21, 22].

Таблица 4. Параметры процесса электрохимической коррозии стали с вакуумными покрытиями из нитрида титана

Исследуемый	Π	Значения параметров коррозионного процесса в разных средах				
образец и па-	Параметры	2.0/	2.0/ ma arran	2.0/	Πιιοπικατικά οποιικό σ	
раметры осаж-	корр. процес-	5 % pacteop		5 % pactbop	дистиллированная	
дения (<i>P</i> и <i>h</i>)	Ca	HNO ₃	П ₂ 5О ₄	NaCI	вода	
	β_a	0,044	0,033	0,143	0,066	
1 Сталь 08кп	β_{κ}	0,033	0,067	0,111	0,045	
	R _Π	440	74	1430	10500	
	jк	0,022	0,13	0,019	0,0011	
2. Покрытие	β_a	0,077	0,052	0,067	0,090	
TiN	β_{κ}	0,100	0,087	0,605	0,80	
<i>P</i> = 0,4 Па	R _Π	1800	10450	25000	120000	
h = 3 мкм	j _ĸ	0,01	0,00135	0,0011	0,0003	
3. Покрытие	β_a	0,065	0,090	0,042	0,090	
TiN	β _κ	0,042	0,067	0,29	0,154	
<i>P</i> = 0,4 Па	R _Π	7200	9500	400000	400000	
h = 5 мкм	jк	0,0015	0,0018	0,00004	0,0006	
4. Покрытие	β_a	0,049	0,050	0,067	0,086	
TiN	β_{κ}	0,040	0,050	0,065	0,200	
P = 0,4Па	R_{Π}	15750	19250	45750	208000	
<i>h</i> = 8,4 мкм	jк	0,0006	0,00057	0,00027	0,0001	
5. Покрытие	β_a	0,015	0,020	0,065	0,040	
TiN	β_{κ}	0,042	0,042	0,030	0,040	
<i>P</i> = 0,13 Па	R _Π	2475	4950	44000	55000	
<i>h</i> = 3,5 мкм	j _ĸ	0,002	0,001	0,0002	0,00016	
6. Покрытие	β_a	0,050	0,067	0,065		
TiN	β_{κ}	0,030	0,067	0,068		
<i>P</i> = 0,13 Па	R_{Π}	2600	5500	60000	—	
<i>h</i> = 5,5 мкм	j _ĸ	0,0033	0,0265	0,00024		
7. Покрытие	β_a	0,167	0,167	0,336	0,110	
TiN	βκ	0,074	0,200	0,154	0,060	
<i>P</i> = 0,13 Па	R _Π	2050	27800	57400	118000	
h = 9,0 мкм	Ĵк	0,011	0,0014	0,0008	0,00015	

Примечание: β_a и β_{κ} – константы Тафеля для анодной и катодной реакций соответственно, B; R_{Π} – поляризационное сопротивление, $OM \cdot cM^2$; j_{κ} – ток коррозии, MA/cM^2 .

Выводы

Показана принципиальная возможность использования покрытий из TiN, получаемых методами вакуумной технологии, для защиты малолегированных сталей от коррозии в нейтральных и кислых средах. Надежность защиты определяется режимами осаждения и толщиной покрытий. Количественные данные о параметрах процесса электрохимической коррозии и влиянии режимов осаждения покрытий на значения электродных потенциалов позволяют оптимизировать режимы нанесения покрытий с учетом ожидаемых условий эксплуатации и требований, предъявляемых к назначению обрабатываемой металлопродукции.

ЛИТЕРАТУРА

1. *Андреев В.Н.* Исследование эффективности применения износостойких покрытий на резцах из быстрорежущей стали. Станки и инструмент. 1982. № 9. С. 18–20.

2. *Ханзаров Г.Н., Магомедов Б.Р., Абдуллаев Э.Г.* Повышение износостойкости деталей литерных машин плазменным нападением // Защита металлов, 1982. Т. 18. № 3. С. 453–454.

3. Костржицкий А.И., Карпов В.Ф., Паскал В.В. Методы нанесения износостойких покрытий на детали машин и конструкций. Киев, УкрНИИНТИ, 1986. № 23. Ук86. 49.

4. *Карпов В.Ф., Костржицкий А.И.* Нанесение износостойких покрытий на инструмент из быстрорежущей стали. Киев, УкрНИИНТИ, 1985. № 2699. Ук85. 13 с.

5. Защитные свойства стали 40X с покрытиями из нитрида титана/В.М. Голубец, В.Г.Процик и др. Физико-химическая механика материалов. 1983. № 3. С. 105–106.

6. Влияние плазменного вакуумного покрытия на коррозионно-усталостную прочность среднеуглеродистой стали /В.М.Голубец, В.Г.Процик и др. Физико-химическая механика материалов. 1983. № 5. С. 117.

7. Костржицкий А.И., Карпов В.Ф., Паскал В.В., Гусарева О.Ф., Терземан Е.Ф. Формирование и защитные свойства вакуумных покрытий из нитрида титана на стали. Киев, УкрНИИНТИ, 1986. № 486. Ук 86. 37 с.

8. *Ройх И.Л., Лебединский О.В., Костржицкий А.И*. О защитных свойствах ионных покрытий на стали // Доклады АН СССР. 1978. Т. 242. № 6. С. 1386–1389.

9. Костржициий А.И. Электрохимия местной коррозии в порах катодных вакуумных покрытий на стали // Физико-химическая механика материалов. 1985. № 3. С. 48–54.

10. Костржицкий А.И. Способы получения и свойства коррозионно-стойких вакуумных многокомпонентных пленок и покрытий // Автореф.дисс... докт. техн. наук. М., НИФХИ им. Л.Я. Карпова, 1988.

11. Влияние условий осаждения на пористость медных вакуумных покрытий на стали /А.И. Костржицкий, О.В. Лебединский и др. Физика и химия обработки, материалов. 1980. № 1. С. 103–107.

12. Костржицкий А.И., Лебединский О.В., Ройх И.Л. Электрохимическое доведение покрытий, полученных методом ионного осаждения в вакууме // Защита металлов. 1979. № 3. С. 343–345.

13. Костржицкий А.И. О роли электрохимической гетерогенности в развитии коррозионных процессов в порах катодных вакуумных покрытий. УкрНИИНТИ, 1984. № 633Ук-84Деп от 10.04.84.

14. Костржицкий А.И. О механизме развития коррозионных процессов в порах катодных вакуумных покрытий на стали // Защита металлов. 1985. Т. 21. № 1. С. 64–68.

15. Костржицкий А.И., Лебединский О.В. Многокомпонентные вакуумные покрытия. М.: Машиностроение, 1987. 208 с.

16. Костржицкий А.И. Исследование медных и медно-цинковых вакуумных покрытий на стали // Автореф.дисс.... канд. техн. наук. М., МВМИ, 1978. 24 с.

17. Тихомиров В.Б. Планирование и анализ эксперимента. М.: Легкая индустрия, 1974.

18. Коррозия. Справочник под ред. Л.Л. Шрейера. Пер с анг. под ред. В.С.Синявского. М.: Металлургия, 1981. 632 с.

19. Костржицкий А.И. Электрохимия планок сплавов на основе меди. Характер электродных процессов при внешней поляризации. УкрНИИНТИ, 1985, № 526Ук-85Деп от 12.03.85. 21 с.

20. Ляпіна О.В. Фізико-хімічні процеси на поверхні плівок мідних сплавів // Авто-реф.дис...канд.хім.наук, Івано-Франківськ, ПНУ ім.В.Стефаника, 2006. 20 с.

21. Ройх И.Л., Колтунова Л.Н., Лебединский О.В. Защитные свойства покрытий, полученные методом ионного осаждения в вакууме // Защита металлов. 1977. Т. 13. № 6. С. 549–661.

22. Лебединский О.В., Костржицкий А.И., Приббе С.А. Влияние параметров тлеющего разряда на скорость распыления стальной подложки // Электронная обработка материалов. 1979. № 3. С. 42–45.

Поступила 27.10.07

После доработки 26.02.08

Summary

The influence of aggressive environment on the behaviour of nitrid-titanum coated steel has been researched. The kinetic of electrode potentials is was studied. The electrochemical corrosion parameters for different aggressive environment are determined. The nitrid-titanum coatings are recommended for corrosion protection of steels.