ИССЛЕДОВАНИЕ ВОЗМОЖНОСТИ СИНТЕЗА ИСКУССТВЕННЫХ АЛ-МАЗОВ ПРИ ЭЛЕКТРОВЗРЫВЕ ГРАФИТОВЫХ ПРОВОДНИКОВ В ЖИД-КОСТИ

Институт импульсных процессов и технологий НАН Украины, пр. Октябрьский, 43-А, г. Николаев, 54018, Украина

Введение. Исследования особенностей развития электрического разряда в графите [1, 2] показали, что существуют режимы электровзрыва (ЭВ) графитовых проводников в жидкости, при реализации которых образуются новые формы углерода, в частности - фуллерены. В то же время в мировой литературе активно обсуждается вопрос о возможности образования алмазной фазы при высокотемпературном синтезе в условиях взрыва [3], в том числе и возможность электровзрывного синтеза искусственных алмазов [4], однако технология их получения указанным способом еще не разработана. Поэтому целью работы является исследование влияния высокоэнергетических режимов энерговвода на структуру и фракционный состав продуктов ЭВ графитовых проводников.

Результаты эксперимента. Методика проведения эксперимента близка к изложенной в [1, 2]. Исследовалось влияние режима энерговвода на фазовый состав продуктов ЭВ. Взрывались цилиндрические графитовые проводники длиной 0,04 м и диаметром от $3 \cdot 10^{-4}$ до $7 \cdot 10^{-4}$ м, погруженные в жидкость (воду и соляровое масло). Шесть различных режимов энерговвода отличались величиной запасенной энергии – от 15 до 300 МДж/кг при разных параметрах разрядного контура. Индуктивность контура варьировалась от 1 до 3 мкГн, емкость конденсаторной батареи - от 1 до 36 мкФ, начальное – напряжение – от 10 до 50 кВ. Рентгенофазовый анализ (РФА) образцов проводился на рентгеновском дифрактометре общего назначения, дисперсность определялась с помощью оптического микроскопа "Неофот-32".

Для исследования фазовых превращений углерода в процессе электрического взрыва проводников (ЭВП) были использованы образцы как из чистого графита, так и содержащие примеси – всего пяти видов. С целью определения возможных примесей проведены гравиметрические исследования исходного сырья (из смеси грифельных стержней различного типа) до и после прокаливания в течение четырех часов при температуре 1140 К. Установлено наличие в нем исходного сырья минимум 29,7% нелетучей составляющей (не углерода и не воды). Результаты анализа приведены в табл. 1.

Таблица 1. Результаты гравиметрического анализа грифельного порошка

Вес тигля, кг	9,0298
Вес тигля с грифельным порошком (начальный), кг	9,2335
Вес тигля с грифельным порошком (конечный), кг	9,0904
Угар, %	70,25
Остаток в тигле, %	29,74

Результаты рентгенофазового анализа (РФА) порошка до прокаливания приведены в табл. 2, а после прокаливания – в табл. 3. Каждая фаза обладает своей кристаллической решеткой и характеризуется только ей присущим набором межплоскостных расстояний. В таблицах приведены углы отражения рентгеновских лучей 20, интенсивность линий рентгеновского спектра *J*. Межплоскостные расстояния кристалла *d* рассчитаны на основе закона Вульфа-Брэгга:

$$2d\sin\theta = n\lambda\,,\tag{1}$$

[©] Кускова Н.И., Гордиенко В.И., Разменов Е.П., Хайнацкий С.А., Электронная обработка материалов, 2006, № 3, С. 153–160.

где *n* – целое число; λ – длина волны излучения. Для сравнения приведены аналогичные данные для графита.

	Гр	Графит				
2 0 , °	<i>J</i> , мм	J, %	d _r , мкм	d _r , мкм	J, %	
1	2	3	4	5	6	
17	3	0,05	5,215432	-	-	
18,8	5	0,09	4,719947	-	-	
21	10	0,17	4,230185	-	-	
21,6	70	1,21	4,114017	-	-	
23,9	30	0,52	3,723062	-	-	
26,6	5800	100,00	3,350971	3,36	100	
42,5	40	0,69	2,126956	2,13	10	
43,9	30	0,52	2,062320	-	-	
44,6	85	1,47	2,031565	2,03	50	
45,8	30	0,52	1,981091	-	-	
50,3	30	0,52	1,813903	1,8	5	
54,7	300	5,17	1,677945	1,678	80	
60	30	0,52	1,54178	1,544	10	
67,9	20	0,34	1,380362	-	-	
77,6	60	1,03	1,230267	1,232	30	
80	5	0,09	1,199291	-	-	
83,7	55	0,95	1,155440	1,15	-	
87,1	45	0,78	1,118873	1,12	-	
90,7	20	0,34	1,083603	-	-	
95,4	25	0,43	1,042262	1,049	-	
102	40	0,69	0,991950	0,991	-	
119	0	0,00	0,894688	-	-	

Таблица 2. Результаты РФА грифельного порошка до отжига

Выделенные строки показывают наличие примесей.

Результаты рентгенофазового анализа грифельного порошка и остатка в тигле после прокаливания свидетельствуют о сложном химическом составе исходного сырья, то есть о значительном количестве примесей в нем.

Таблица 3. Результаты РФА грифельного порошка после отжига

2 θ , ^o	Ј, мм	J, %	d _r , мкм
1	2	3	4
11,8	20	12,50	7,499474
13,3	20	12,50	6,656851
14,0	50	31,25	6,325544
15,5	5	3,13	5,716608
21,5	20	12,50	4,132925
24,1	40	25,00	3,692617
26,0	160	100,00	3,426923
26,6	150	93,75	3,350971
27,8	20	12,50	3,208992
31,1	25	15,63	2,875605
33,1	40	25,00	2,706282
35,8	40	25,00	2,508128
36,8	40	25,00	2,442237
39,5	7	4,38	2,281301
44,0	15	9,38	2,057865

Продолжение табл. 3

46,0	10	6,25	1,972942
49,5	40	25,00	1,841328
55,0	30	18,75	1,669501
60,0	30	18,75	1,54178
66,0	20	12,50	1,415414
67,0	20	12,50	1,396699
68,2	20	12,50	1,375020
80,5	25	15,63	1,193099
83,0	25	15,63	1,163396
87,1	25	15,63	1,118873
89,2	15	9,38	1,097894
90,8	20	12,50	1,082671

Исследованы продукты ЭВП для режимов 1–6, отличающихся разной запасенной удельной энергией (от 175 до 300 МДж/кг с интервалом 25 МДж/кг). Вид частиц порошков, полученных при разных режимах ЭВ, и размеры частиц сильно отличаются друг от друга, несмотря на плавное изменение вводимой энергии. Дисперсность полученных порошков представлена в табл. 4.

Таблица 4. Дисперсность частиц

№ режима	Средний размер час-	Площадь частиц, мкм ²	Содержание мелких
	тиц, мкм		частиц, %
1	42,33	1406,6	-
2	Крупных – 30,8	745, 5	20
	Мелких – 1,0	0,785	
3	Крупных – 76	4534,16	50
	Мелких – 1,2	1,13	
4	18,3	263, 6	—
5	Крупных – 105	8654,62	20
	Мелких – 0,8	0,502	
6	Крупных – 63,2	3139,1	20
	Мелких – 1,0	0,785	

Размер мелких частиц в табл. 4 – до 4 мкм (в основном от 0,8 до 1,5 мкм).

Вид образцов порошка показан на рис. 1. Номер образца соответствует номеру режима.

Согласно кластерному механизму синтеза алмазов [5], рост частиц происходит в результате взаимодействия кластеров с зародышами и между кластерами. Для рассмотренных режимов количество мелких частиц не превышает 20%, поэтому более вероятен рост частиц за счет взаимодействий типа частица – зародыш.

Характерное время протекания этих процессов t можно оценить, исходя из средних размеров алмазоподобной фазы \overline{d} , из выражения [5]:

$$\overline{d} \approx \left(\frac{75k\theta_D}{8\pi Am_u n}\right)^{1/5} t^{2/5}, \qquad (2)$$

где $k\theta_D$ – энергия основного колебательного состояния решетки; A – атомный вес; m_u – атомная единица массы; n – концентрация атомов в кристаллической решетке.

Так как алмазоподобная фаза представляет собой мелкие кубические кристаллы, средний размер которых порядка 1 µм, то интенсивное охлаждение углеродного образца и закалка алмазоподобной фазы происходили, как следует из (2), за время $t \approx 10^{-2}$ с. Это время значительно больше времени разряда и соответствует по порядку величины времени пульсации парогазовой полости [6].

Рис. 1. Образцы продуктов ЭВ для режимов 1-6. Увеличение x250. а – образец 1; б – образец 2; в – образец 3; г – образец 4; д – образец 5; е – образец 6

Зависимость средних размеров частиц от начального напряжения и емкости представлена на рис. 2. Как видно из рисунка 2, средние размеры как мелких, так и крупных частиц резко увеличиваются с ростом начального напряжения.

Проведены рентгеноструктурные исследования продуктов разных режимов электровзрыва графитовых проводников в воде, характеризующихся различной запасенной удельной энергией.

Анализ рентгенограмм трех образцов продуктов ЭВП, полученных при запасенных удельных энергиях 15, 20 и 80 МДж/кг из чистого графита (99,9%), показал, что порошок состоит в основном из микрокристаллов графита. Лишь значительное увеличение запасенной удельной энергии (до 175 МДж/кг) приводит к появлению новых пиков на рентгенограммах, соответствующих новым углеродным формам. Предварительные исследования образцов 1–6, отличающихся разной запасенной удельной энергией (от 175 до 300 МДж/кг с интервалом 25 МДж/кг), позволили предположить наличие алмазоподобной фазы в количестве не более 10% по массе и присутствие значительного количества кристаллических частиц с неискаженной структурой и довольно крупных размеров (о чем свидетельствует малое уширение интерференционных максимумов).

Результаты рентгеноструктурного анализа полученных при различных режимах порошков, предположительно содержащих алмазы, приведены в сводной табл. 5. Съемку проводили в медном монохроматизированном излучении. Для некоторых образцов диапазоны углов съемки ограничены областями, расположенными вблизи самых интенсивных максимумов и максимумов интерференции от алмаза, приведенных для сравнения в табл. 5.

Как видно из таблицы, в выбранном диапазоне режимов получения порошков существенных изменений не происходит. Наиболее интенсивный максимум во всех образцах – от 2,8010 до 2,8269 А. Другие максимумы изменяют свою интенсивность на проценты, а не количественно. Все сильные рефлексы присутствуют во всех проанализированных образцах. Это свидетельствует скорее всего о том, что при различных режимах получения порошков происходит небольшое количественное перераспределение состава смеси фаз порошка.

Рис. 2. Зависимость среднего размера мелких (а) и крупных (б) частиц от начального напряжения C, мк Φ : 1-1,5; 2-3

Таблица 5. Сравнительные данные рентгеноструктурного анализа образцов, полученных при режимах 1-6

Образец 1 Образец 2		Образец 3		Образец 4		Образец 5		Образец 6		Алмаз			
J,%	d, A	<i>J,</i> %	d, A	J,%	d, A	J,%	d, A	J,%	<i>d,</i> A	J,%	d, A	d, A	J,%
14	2,071	9	2,0713	9	2,0758	5	2,076	7	2,0758	13	2,0668	2,06	100
15	1,261	14	1,2606	16	1,2606	9	1,261	18	1,2620	17	1,2521	1,261	27
1	1,072	-	-	-	-	-	-	-	-	1	1,0690	1,0754	16
5	0,892	4	0,8910	5	0,8924	2	0,892	3	0,8929	7	0,8910	0,8916	7
2	0,806	1	0,8117					0	0,8083	2	0,8151	0,8182	15

Из табл. 5 видно, что постепенное увеличение запасаемой удельной энергии (на 25 МДж/кг) заметно изменяет состав порошков.

Международным союзом кристаллографов было принято, что две линии совпадают, если отвечающие им значения межплоскостных расстояний d не отличаются друг от друга более чем на 0,03 А. Для образцов 1 и 6 рассчитанные межплоскостные расстояния отличаются от эталонных менее чем на 0,01А. На основании полученных предварительных результатов можно утверждать, что в пробах 1 и 6 содержится не более 10% алмазов.

При трении некоторых проб порошка отдельные частицы оставляют на поверхности стекла царапины с многочисленными боковыми сколами, подобными тем, которые получаются при трении алмазом. Кроме того, в этих пробах содержится кварц различных модификаций; в одних случаях о наличии кварца (α – кварц, тридимид, α – кристобалит) в пробах можно предполагать, а в других – говорить с уверенностью. На некоторых рентгенограммах проявляются линии кальцита и корунда; вероятно, эти минералы, как и кварц, содержались в исходном образце.

Относительно наличия в порошке алмазной фазы можно сделать следующие заключения. Она содержится в исследованных образцах в количестве до 10% по массе. Об этом свидетельствует неплохое совпадение значений максимумов интерференции, располагающихся вблизи теоретических значений таковых для алмаза (выделенные строки табл. 5). Правда, этому предположению несколько противоречит сильное перераспределение интенсивностей: значительно увеличенный второй максимум и очень слабые, практически отсутствующие, третий и пятый – в некоторых образцах. Наиболее предпочтительные, с точки зрения наличия алмазов в порошках, – режимы 1 и 6.

Относительно других углеродных фаз – 12H (26-1076), 8H (26-1080), 10H, 12H (26-1082), C – чаоит, 16H, 6R, 20H (26-1081), С - лонсдейлит, 20H (16-1083), 8H (26-1078) графит - можно утверждать, что в значительных количествах они в представленных образцах не содержатся.

Обсуждение результатов. Для построения фазовых траекторий углерода в процессе разных режимов электровзрыва необходимо рассчитывать термодинамические параметры (давление и температуру) в процессе разряда. Пока проводник находится в твердом состоянии, на него воздействует магнитное давление, определяемое выражением

$$P(r) = \frac{\mu I^2(t)}{(2\pi a)^2} \left(1 - \frac{r^2}{a^2} \right),$$
(3)

где *r* – расстояние от оси проводника, м; μ – магнитная проницаемость (для графита $\mu = 4\pi \cdot 10^{-7} \, \Gamma/M$).

Для определения температуры было найдено приближенное решение системы уравнений, включающей телеграфное уравнение и уравнение баланса энергии. Полученная приближенная временная зависимость температуры примет вид

$$T(t) \approx T_0 + \frac{R_0}{3mc} \left(\frac{U_0}{L}\right)^2 t^3$$
, (4)

где T_0 – начальная температура; R_0 – начальное сопротивление проводника.

Как следует из результатов одновременной регистрации электрических (тока, напряжения) и термодинамических (температуры, плотности) параметров [7], момент фазового превращения может быть зафиксирован по перегибу на осциллограммах тока и напряжения. Это позволяет определить момент достижения фазовой траекторией кривой фазового равновесия.

Согласно проведенным оценкам давления и температуры, в процессе рассматриваемых (1-6) режимов ЭВ происходит плавление внутренней части проводника. Дальнейший нагрев жидкой сердцевины проводника до начала кипения приводит к росту газокинетического давления. Результирующее давление в каждой точке жидкого проводника и температуру можно оценить из данных выражений [8]:

$$P(r,t) \approx P(a,t) + P(0,t) \left(1 - \frac{r^2}{a^2} \right),$$

$$P(0,t) = \frac{\mu I^2(t)}{(2\pi a)^2} + \frac{\rho^0}{2} q^2 (a^0)^2,$$

$$q = 0.5\alpha \frac{(I^0)^2 R_0}{mc},$$

$$T(t) = T_0 + \frac{(I^0)^2 R_0}{mc} t,$$

(5)

где P(a, t) – давление на поверхности проводника, Па; ρ^0 – плотность после плавления, кг/м³; a^0 – радиус проводника после плавления, м; α – коэффициент теплового расширения, K^{-1} ; I_0 – ток в момент после

тс

плавления, А; R_0 – сопротивление проводника в момент после плавления, Ом; T_0 – температура проводника после плавления, K.

Термодинамические параметры углерода в плазменной и газовой областях фазовой диаграммы были оценены по известной методике [9, 10]. Рассчитанные фазовые траектории углерода для центральных слоев проводника в процессе нагрева импульсами тока, приводящие к фазовым переходам графит – алмаз с заходом в область жидкой фазы углерода (кривая 2) и графит-фуллерены (кривая 3), представлены на фазовой диаграмме – рис. 3. Фазовая траектория (кривая 1) соответствует анализируемому в работе [11] прямому фазовому переходу графит – алмаз.

Рис. 3. Фазовая диаграмма состояний и фазовые траектории углерода. Фазовые траектории углерода при нагреве и переходах графит–алмаз (кривые 1, 2); графит – фуллерены (кривая 3). Штрихом обозначены линии фазового равновесия углерода

Режимы 1 и 6 ЭВ графитовых проводников, в процессе которых предположительно происходит синтез алмазоподобной фазы, являются беспаузными. Однако при реализации режима 6 как в воде, так и в соляровом масле оказалось, что после нескольких разрядов с характерной для ЭВ повторяемостью осциллограмм тока и напряжения происходит изменение вида осциллограмм – появляется пауза тока. Причем повышение напряжения или запасенной энергии не приводит к реализации беспаузного режима.

Как известно [12], при беспаузном режиме формирование повторного пробоя происходит в окружающей жидкости. Тогда необходимо предположить, что при указанном режиме ЭВ рабочая среда с твердыми углеродными включениями существенно отличается по своим диэлектрическим характеристикам, что препятствует развитию повторного пробоя. Этими твердыми включениями и являются, по-видимому, алмазоподобные кристаллы.

Полученные данные о влиянии режимов энерговвода не позволили установить закономерности, обусловливающих синтез алмазоподобных структур, так как оба режима были граничными по энергии в проведенной серии экспериментов.

Условия проводимых экспериментов совпадают с диапазоном физико-химических параметров, обусловливающей высокую вероятность спонтанного возникновения новых углеродных фаз. Для образующейся в таких условиях новой фазы характерно то, что она может быть аморфной или микрокристаллической, размеры кристаллитов весьма чувствительно зависят от параметров процесса и, наконец, образующиеся структуры являются склонными к релаксации в случае несоблюдения условий «закалки».

Выводы. Проведенный качественный рентгенофазовый анализ продуктов ЭВП и материала графитовых образцов показал, что, несмотря на большое количество примесей, содержащихся в исходном сырье, в полученных порошках имеется определенное количество кристаллов с межплоскостными расстояниями, совпадающими с алмазом.

Образование алмазоподобной фазы происходит, по-видимому, в процессе конденсации жидкого углерода.

Таким образом, показана возможность синтеза микропорошков алмаза (в количестве, не превышающем 10% от массы исходного материала) в процессе беспаузных режимов электровзрыва графитовых проводников.

ЛИТЕРАТУРА

1. Богуславский Л.З., Кускова Н.И., Петриченко В.Н., Хайнацкий С.А. Электрический разряд в графите и его особенности // Электронная обработка материалов. 2002. № 3. С. 32–38.

2. Богуславский Л.З., Гук И.П., Кускова Н.И., Хайнацкий С.А., Щербак А.Н. Электровзрывной метод получения фуллеренов // Электронная обработка материалов. 2002. № 4. С. 30–34.

3. *Иванов В.В., Коробенко В.Н., Паранин С.Н.* Особенности структуры ультрадисперсных алмазов, полученных высокотемпературным синтезом в условиях взрыва // Доклады АН СССР. 1978. Т. 239. № 4. С. 838–841.

4. *Бушман А.В., Воробьев В.С., Рахель А.Д., Фортов В.Е.* О возможности электровзрывного синтеза искусственных алмазов // Доклады АН СССР. 1990. Т. 315. № 5. С. 1124–1126.

5. Лин Э.Э. О кластерном механизме синтеза алмазов из различных твердых форм углерода // Физика твердого тела. 2000. Т. 42. Вып. 10. С. 1893–1898.

6. Наугольных К.А., Рой Н.А. Электрические разряды в воде. М.: Наука, 1971. 156 с.

7. *Коваль С.В., Кривицкий Е.В., Раковский Г.Б.* Исследование высокотемпературных свойств металлов методом подводного электрического взрыва проводников. Николаев, 1989. 32 с. (Препринт / АН УС-СР. Проектно-конструкторское бюро электрогидравлики; №7).

8. *Кускова Н.І., Ткаченко С.І.* Теоретичне дослідження динаміки фазових перетворень в результаті мікросекундних електричних вибухів провідників циліндричної форми // Укр. фізичн. журн. 1999. Т. 44. № 3. С. 351–356.

9. Вовченко А.И., Кучеренко В.В., Шамко В.В. Особенности пространственно-временной эволюции парогазовых полостей, генерируемых подводным искровым разрядом // Журн. прикладной механ. и техн. физ. 1978. № 6. С. 58–64.

10. Шамко В.В. Динамика пассивной стадии подводного электровзрыва // Электроразрядные процессы: теория, эксперимент, практика. Киев, Наук. думка, 1984. С. 40–52.

11. Кускова Н.И. Фазовые превращения углерода в процессе нагрева мощным импульсом тока // Письма в журн. технич. физики. 2005. Т. 31. Вып. 17. С. 28–34.

12. Взрывающиеся проволочки / Под ред. А. А. Рухадзе. М.: Изд-во иностр. лит., 1963. 142 с.

Поступила 29.12.05

Summary

The influence of a power input mode on the phase composition of products of the electric explosion of cylindrical graphite fluid-immersed conductors was investigated. The possibility of a diamond micropowder synthesis in the process of pauseless modes of the electric explosion is demonstrated. The formation of the diamond-like phase happens in the process of liquid carbon condensation.