Динамика пульсаций газовой полости в сжимаемой жидкости в результате электроразрядного ввода энергии

А. В. Шептилевский

Николаевский Национальный аграрный университет, ул. Парижской коммуны, 9, г. Николаев, 54029, Украина, e-mail: <u>shipa76@mail.ru</u>

Исследуется динамика газовой полости в идеальной сжимаемой жидкости при импульсном вводе энергии в неё. Разработан алгоритм взаимодействия пульсирующего газового пузырька со сжимаемой жидкостью. Выполнен сравнительный анализ динамик пузырька в несжимаемой и сжимаемой жидкостях.

Ключевые слова: пузырёк, идеальная сжимаемая жидкость, кавитация, динамика полости, уравнение Рэлея, сферическая волна, электрический разряд.

УДК 534-141+537.528

введение

Образование газовой полости, как известно, может быть вызвано падением давления (гидродинамическая кавитация) или прохождением акустической волны (акустическая кавитация) [1, 2]. Наряду с этими двумя случаями возникновения кавитационного пузырька существуют задачи, в которых появление полости обусловлено вводом в жидкость энергии. Известны различные способы ввода энергии в полость: электрический разряд [3–6], выделение энергии при воздействии лазерного импульса [7], детонация ВВ в жидкости [8].

Под действием внешних факторов, таких как электрический разряд, в воде выделяется энергия и образуется кавитационная полость. Она воздействует на жидкость при своем расширении и последующих пульсациях. Такое воздействие может изменять свойства жидкости и использоваться, например, при стерилизации последней [9, 10], синтезе наноразмерных частиц металлов [11] и углеродосодержащего сырья [12–14], генерации ударных волн для воздействия на деформируемый материал [15–18].

Рассматриваемая в данной работе задача является результатом моделирования динамики системы, состоящей из упругой сферической оболочки, заполненной идеальной жидкостью, с газовой полостью в центре [19]. Рассматриваемая система выводилась из состояния равновесия путем ввода энергии в газовую полость. Так как жидкость ограничена упругой оболочкой, образуется отраженная волна, в связи с чем возникает необходимость в учете взаимного влияния газовой полости и жидкости, а также разработке соответствующего симметричного алгоритма.

Объектом исследования служат пульсации газовой полости, генерируемой электрическим разрядом, в сжимаемой жидкости, предметом исследования – взаимное влияние газовой полости и сжимаемой жидкости при их взаимодействии.

Цель работы – изучение влияния сжимаемости жидкости на пульсации газовой полости, возникающие в результате электрического разряда в ней, а также разработка и тестирование необходимого для этого исследования симметричного алгоритма взаимодействия газовой полости со сжимаемой жидкостью.

Для описания взаимодействия газовой полости со сжимаемой жидкостью следует разработать математическую модель этой системы, построить алгоритм решения и выполнить его тестирование на примере решения ряда задач.

ФИЗИЧЕСКАЯ ПОСТАНОВКА ЗАДАЧИ

Рассматриваем пузырек газа, находящийся в жидкости. Благодаря его малым размерам форму можно считать сферической, так как она обеспечивается силами поверхностного натяжения [20].

При движении жидкости преобладают деформации объемного сжатия, а не сдвига, поэтому вязкие напряжения в ней можем не учитывать, то есть предполагаем, что жидкость идеальная [20, 21]. Это позволяет рассматривать волновые процессы в жидкости в потенциальном приближении.

Так как размеры полости по сравнению с размерами области, заполненной жидкостью, малы, то за время ввода энергии, намного меньшего, чем период пульсации полости, не имеет принципиального значения закон ее ввода [3]. Поэтому считали, что энергия при разряде выделяется в пузырьке с постоянной мощностью.

Диаметр электродов, необходимых для электрического разряда в пузырьке с энергией до 100 Дж, не превышает 2 мм, что существенно меньше среднего диаметра пузырька при его пульсациях. Поэтому предполагали, что влиянием электродов можно пренебречь [3, 7, 15].

МАТЕМАТИЧЕСКАЯ ПОСТАНОВКА ЗАДАЧИ

Пульсация газовой полости определяется уравнением баланса энергии. Выбор этого уравнения обусловлен тем, что одним из способов выведения системы пузырек-жидкость из состояния равновесия является ввод энергии в газовую полость [3]:

$$\frac{1}{\gamma - 1} \frac{d}{dt} \left(P_b \cdot V_b \right) + P_b \frac{dV_b}{dt} = N(t), \tag{1}$$

где $V_b = \frac{4}{3}\pi R_b^3$ – объём пузырька; R_b – радиус пу-

зырька; P_b – давление в пузырьке; γ – показатель адиабаты газа в пузырьке; N(t) – мощность вводимой в полость энергии.

На некотором удалении от полости в жидкости может возникать асимметрия при распространении возмущения, связанная с формой поверхности, ограничивающей жидкость, или наличием в последней преграды. Для возможного учета этой асимметрии при описании ее динамики использовали волновое уравнение в сферической системе координат в трехмерной постановке [22, 23]:

$$\frac{\partial^2 f}{\partial t^2} = c^2 \left[\frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial f}{\partial r} \right) + \frac{1}{r^2 \sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial f}{\partial \theta} \right) + \frac{1}{r^2 \sin^2 \theta} \frac{\partial^2 f}{\partial \phi^2} \right],$$
(2)

где *f* – потенциал скорости жидкости; *c* – скорость звука в невозмущённой жидкости.

Давление в жидкости определялось на основе интеграла Коши-Лагранжа в линеаризованной форме [21]:

$$P = P_0 - \rho_1 \frac{\partial f}{\partial t},\tag{3}$$

где ρ_1 – плотность невозмущённой жидкости.

Взаимодействие пузырька с жидкостью осуществляется на основе условий на контактной границе двух сред, условий равенства скоростей и равенства давлений [24]:

$$\frac{dR_b}{dt} = \frac{df}{dr}, \ P_b = P^*, \tag{4}$$

где P^* – давление на границе с пузырьком. Так как жидкость предполагается идеальной, то касательные напряжения на границе ее раздела и пузырька равны нулю.

МЕТОД РЕШЕНИЯ

Уравнения математической модели (1)–(4) решали с помощью численных методов. Непрерывную в пространстве и времени область решения системы уравнений заменяли дискретной. Волновое уравнение дискретизировали в пространстве (используя сферическую систему координат [19]) и во времени по методу конечных разностей [25, 26]. Решение полученной алгебраической системы уравнений выполняли на основе явных численных методов, используя рекуррентные по времени формулы.

Для решения уравнения (1) применяли двухслойный по времени метод Эйлера-Коши [27].

Выразив значение потенциала произвольной точки жидкости в сферической системе координат из волнового уравнения на n + 1-м временном слое, получили формулу для его определения с помощью известных переменных (верхний индекс обозначает слой по времени, нижние индексы – узел геометрической сетки):

$$f_{i,j,k}^{n+1} = 2f_{i,j,k}^{n} - f_{i,j,k}^{n-1} + \Delta t^{2}c^{2} \\ \left[k_{1} \cdot \left(r_{k+\frac{1}{2}}^{n} \left(f_{i,j,k+1}^{n} - f_{i,j,k}^{n} \right) - r_{k-\frac{1}{2}}^{n} \left(f_{i,j,k}^{n} - f_{i,j,k-1}^{n} \right) \right) + \right. \\ \left. + k_{2} \left(\sin \theta_{i+\frac{1}{2}} \left(f_{i+1,j,k}^{n} - f_{i,j,k}^{n} \right) - \sin \theta_{i-\frac{1}{2}} \left(f_{i,j,k}^{n} - f_{i-1,j,k}^{n} \right) \right) + \right. \\ \left. + k_{3} \left(f_{i,j+1,k}^{n} - f_{i,j,k}^{n} - f_{i,j,k}^{n} + f_{i,j-1,k}^{n} \right) \right],$$
(5)

где $k_1 = 1/r_k^2 \Delta r^2$, $k_1 = 1/r_k^2 \Delta \theta^2 \sin \theta_i$, $k_1 = 1/r_k^2 \Delta \phi^2 \sin^2 \theta_i$.

Давление на следующем временном слое определяли путём дискретизации (3):

$$P_{i,j,k}^{n+1} = P_0 - \rho_1 \frac{f_{i,j,k}^{n+1} - f_{i,j,k}^n}{\Delta t} \,. \tag{6}$$

Из системы уравнений (5) можем найти все значения потенциала жидкости на n + 1-м временном слое, кроме его значений на границе полости. Жидкость и газовая полость оказывают друг на друга взаимное влияние, поэтому для нахождения потенциала жидкости на границе $f_{i,j,l}^{n+1}$ и параметров газовой полости необходимо решить систему уравнений (1) и (4):

$$\begin{cases} a \frac{dP_b}{dt} + b \frac{dR_b}{dt} = N(t), \\ \frac{dR_b}{dt} = \frac{df_1}{dr}, \\ P_b = P^*, \end{cases}$$
(7)

^{где} $a = \frac{1}{\gamma - 1} \frac{4}{3} \pi \cdot R_b^3, \ b = \frac{\gamma}{\gamma - 1} P_b 4 \pi \cdot R_b^2$ получены после преобразования уравнения (1).

Заменив производные в системе (7) соответствующими разностями и сгруппировав неизвестные в левых частях уравнений, получили систему линейных уравнений, неизвестными в которой являются P_b^{n+1} , R_b^{n+1} , f_1^{n+1} :

$$\begin{cases} a^{n}P_{b}^{n+1} + b^{n}R_{b}^{n+1} = c^{n}, \\ R_{b}^{n+1} + \frac{\Delta t}{2\Delta r}f_{1}^{n+1} = d^{n}, \\ f_{1}^{n+1} + \frac{\Delta t}{2\rho_{1}}P_{b}^{n+1} = e^{n}, \end{cases}$$
(8)

где правые части уравнений системы на предыдущем временном слое определяются как

$$c^{n} = a^{n} P_{b}^{n} + b^{n} R_{b}^{n} + \Delta t \frac{1}{2} \left(N\left(t_{n}\right) + N\left(t_{n+1}\right) \right),$$

$$d^{n} = R_{b}^{n} + \frac{\Delta t}{2\Delta r} \left(f_{2}^{n} - f_{1}^{n} + f_{2}^{n+1} \right),$$

$$e^{n} = f_{1}^{n} - \frac{\Delta t}{2\rho_{1}} P_{b}^{n} + \frac{\Delta t}{\rho_{1}} P_{0}.$$
(9)

Для решения системы (8) использовали двухшаговый метод. На первом шаге выполнялось определение предварительных значений переменных:

$$\begin{cases} \tilde{P}_{b}^{n+1} = \frac{2\rho_{1}\left(e^{n}b^{n}\Delta t - 2\Delta rb^{n}d^{n} + 2\Delta rc^{n}\right)}{4\Delta ra^{n}\rho_{1} + b^{n}\Delta t^{2}}, \\ \tilde{R}_{b}^{n+1} = \frac{4\Delta ra^{n}\rho_{1}d^{n} - a^{n}2\rho_{1}e^{n}\Delta t + \Delta t^{2}c^{n}}{4\Delta ra^{n}\rho_{1} + b^{n}\Delta t^{2}}, \\ \tilde{f}_{1}^{n+1} = \frac{2\Delta r\left(a^{n}2\rho_{1}e^{n} + \Delta tb^{n}d^{n} - \Delta tc^{n}\right)}{4\Delta ra^{n}\rho_{1} + b^{n}\Delta t^{2}}. \end{cases}$$
(10)

На втором шаге, с учетом предварительных значений искомых величин, выполнялась их корректировка по формулам

$$\begin{cases} P_p^{n+1} = \frac{2\rho_1 \left(e^{n+1} b^{n+1} \Delta t - 2\Delta r b^{n+1} d^{n+1} + 2\Delta r c^{n+1} \right)}{4\Delta r a^{n+1} \rho_1 + b^{n+1} \Delta t^2}, \\ R_p^{n+1} = \frac{4\Delta r a^{n+1} \rho_1 d^{n+1} - a^{n+1} 2\rho_1 e^{n+1} \Delta t + \Delta t^2 c^{n+1}}{4\Delta r a^{n+1} \rho_1 + b^{n+1} \Delta t^2}, \\ f_1^{n+1} = \frac{2\Delta r \left(a^{n+1} 2\rho_1 e^{n+1} + \Delta t b^{n+1} d^{n+1} - \Delta t c^{n+1} \right)}{4\Delta r a^{n+1} \rho_1 + b^{n+1} \Delta t^2}. \end{cases}$$

$$(11)$$

Коэффициенты для вычисления скорректированного значения переменных определялись с помощью следующих соотношений:

$$a^{n+1} = \frac{4\pi}{3(\gamma - 1)} \left[\frac{1}{2} \left(R_p^n + \tilde{R}_p^{n+1} \right) \right]^3 = \frac{\pi}{6(\gamma - 1)} \left(R_p^n + \tilde{R}_p^{n+1} \right)^3,$$

$$b^{n+1} = \frac{4\pi\gamma}{\gamma - 1} \frac{1}{2} \left(P_p^n + \tilde{P}_p^{n+1} \right) \frac{1}{4} \left(R_p^n + \tilde{R}_p^{n+1} \right)^2 =$$

$$= \frac{\pi\gamma}{2(\gamma - 1)} \left(P_p^n + \tilde{P}_p^{n+1} \right) \left(R_p^n + \tilde{R}_p^{n+1} \right)^2,$$

$$c^{n+1} = a^{n+1} P_p^n + b^{n+1} R_p^n + \Delta t \frac{1}{2} \left(N(t_n) + N(t_{n+1}) \right),$$

$$d^{n+1} = R_p^n + \frac{\Delta t}{2\Delta r} \left(f_2^n - f_1^n + f_2^{n+1} \right),$$

$$e^{n+1} = f_1^n - \frac{\Delta t}{2\rho_1} P_p^n + \frac{\Delta t}{\rho_1} P_0.$$
(12)

РЕЗУЛЬТАТЫ ВЫЧИСЛЕНИЙ

При тестировании алгоритма рассматривали пузырек газа в неограниченной идеальной жидкости при начальных условиях $P_0 = 0,1$ МПа, $\rho_0 = 1000$ кг/м³ и с начальным радиусом 1 мм. Пузырек выводили из состояния равновесия, задавая скорость перемещения его границы в начальный момент времени, после чего он начинал совершать пульсации с определенной частотой и амплитудой.

С помощью предложенного алгоритма определяли динамику газовой полости в сжимаемой жидкости. Получаемые результаты сравнивали с динамикой полости в несжимаемой жидкости при тех же начальных условиях. Динамику полости в несжимаемой жидкости исследовали, используя уравнения Рэлея [2, 20]:

$$R\frac{d^{2}R}{dt^{2}} + \frac{3}{2}\left(\frac{dR}{dt}\right)^{2} + \frac{1}{\rho}\left(P_{\infty} - P(R)\right) = 0, \qquad (13)$$

из которого следует, что период пульсаций пузырька определяется периодом его собственных пульсаций [20]:

$$T_0 = 2\pi R_0 \sqrt{\frac{\rho_0}{3\gamma P_0}}.$$
 (14)

Сравнивая динамику газовой полости в сжимаемой и несжимаемой жидкостях, можем сделать вывод про их отличия при равных начальных условиях и условии выведения из состояния равновесия. Амплитуда изменения радиуса и давления при разных начальных скоростях границы полости для сжимаемой жидкости меньше, чем для полости в несжимаемой жидкости (рис. 1, 2). Такое отличие связано с тем, что изменение скорости на границе полости в несжимаемой жидкости вызывает изменение динамики всей жидкости, в которой расположена газовая полость. В случае сжимаемой жидкости изменение динамики на границе приводит к формированию сферической волны давления и постепен-

Рис. 2. Зависимость изменения давления газовой полости от начальной скорости для случаев сжимаемой и несжимаемой жидкостей.

-▲— Р_{тіп} для несжимаемой

— Р_{тах} для несжимаемой

Рис. 3. Зависимость изменения периода пульсации газовой полости от начального возмущения для случаев сжимаемой и несжимаемой жидкостей.

ному изменению параметров жидкости в окрестности полости.

Зависимость периода пульсации газовой полости от скорости начального возмущения представлена на рис. 3. Сплошной линией изображается период пульсации в сжимаемой жидкости, штриховой – период пульсации в несжимаемой жидкости. При скоростях возмущения поверхности, близких к нулю, периоды пульсаций пузырька для случаев сжимаемой и несжимаемой жидкостей практически одинаковы (отличаются в пределах погрешности вычислений, не превышающей 5%) и совпадают с периодом собственных колебаний пузырька (14).

Рис. 5. Динамика полости при различных значениях радиуса ограничивающей оболочки (R = 0,1 м – пунктирная линия; R = 0,2 м – штриховая линия; R = 0,5 м – тонкая сплошная линия; неограниченная жидкость – сплошная жирная линия).

Возмущение от пульсирующего пузырька передавалось жидкости, в которой возникала волна давления. Её профиль в радиальном направлении в различные моменты времени представлен на рис. 4.

Полученные профили распространения волны давления в жидкости соответствуют закону распространения сферической волны [23], амплитуда которой обратно пропорциональна расстоянию от источника возмущения (огибающая амплитуд давления показана на рис. 4 штриховой линией).

Результаты пульсации газовой полости с начальным радиусом 1 мм при вводе в неё энергии 10 Дж при различных значениях радиуса оболочки представлены на рис. 5. При постоянном значении энергии с увеличением радиуса оболочки увеличиваются амплитуда пульсаций полости и их период.

При достаточно больших значениях радиуса оболочки динамика полости мало отличается от её пульсаций в неограниченной жидкости (рис. 5 – жирная сплошная линия), вместе с тем период колебаний полости совпадает с периодом пульсаций, вычисленным по формуле (14). Кроме того, общая закономерность пульсаций полости совпадает с результатами, приведенными в работе [8].

выводы

При анализе результатов, получаемых в ходе эксперимента, актуальным является вопрос их теоретического обоснования с помощью математического моделирования исследуемого процесса. Особое место теоретические исследования занимают при изучении быстропротекающих процессов, которые характерны для электрических разрядов.

Предложенный алгоритм, использующий уравнение баланса энергии газовой полости, адекватно описывает взаимодействие и взаимное влияние полости и сжимаемой жидкости. Такое взаимодействие имеет место во многих практических задачах, сопряженных с вводом в жидкость энергии. Также предложенный алгоритм позволяет учитывать возможную асимметрию динамики жидкости, связанную с наличием в последней физических тел либо с формой поверхности, которая ограничивает жидкость.

ЛИТЕРАТУРА

- 1. Бреховских Л.М., Гончаров В.В. *Введение в* механику сплошных сред. М.: Наука, 1982. 337 с.
- 2. Brennen C.E. *Cavitation and Bubble Dynamics*. N.Y.: Oxford University Press. 1995. P. 294.
- 3. Наугольных К.А., Рой Н.А. Электрические разряды в воде. М.: Наука, 1977. 151 с.
- Каменская Л.А., Косенков В.М. Расчет расширения канала электрического разряда в жидкости, описываемой в потенциальном приближении. *Акуст. вісн.* 2001, **4**(2), 47–52.
- 5. Косенков В.М., Кускова Н.И. Развитие пробоя в воде. *ЖТФ*. 1987, **57**(10), 2017–2020.
- Ахатов И.Ш., Вахитова Н.К., Топольников А.С. Динамика пузырька в жидкости при воздействии лазерного импульса. ПМТФ, 2002, 43(1), 52–59.
- Барбашова Г.А. Исследование гидродинамического давления в ограниченной области трубы при взрыве микропроводника. ЭОМ. 2009, 45(1), 44–47.
- 8. Орленко Л.П. Физика взрыва и удара: учебное пособие для вузов. М.: ФИЗМАТЛИТ, 2006. 404 с.
- Азизов Э. А., Емельянов А. И., Ягнов В. А. Методы обеззараживания воды электрическими разрядами. Прикладная физика. 2003, (2), 26–30.
- Анпилов А.М., Бархударов Э.М., Копьев В.А., Коссый И.А., Силаков В.П., Тактакишвили М.И., Тарасова Н.М., Темчин С.М., Задирака Ю.В., Кристофи Н., Козлов Ю.Н., Пак Ю. Использование электрического разряда как источника УФ-излучения, озона и двуокиси водорода. Прикладная физика. 2002, (5), 74–80.
- 11. Артёмов А.В., Жильцов В.А., Крутяков Ю.А., Иванов М.Н., Переславцев А.В., Петрова М.В., Тимофеев А.В., Шеляков О.В. Получение наноразмерных металлов электрическим разрядом в жидкости. Вопросы атомной науки и техники. *Сер.: Плазменная электроника и новые методы* ускорения. 2008, 4(6), 150–154.
- Артемов А.В., Переславцев А.В., Крутяков Ю.А., Вощинин С.А., Кудринский А.А., Бульба В.А., Острый И.И. Плазменные технологии переработки углеводородного сырья и отходов. Экология и промышленность России. 2011, (10), 18–23.
- Богуславский Л.З., Назарова Н.С., Винниченко Д.В., Рудь А.Д., Урубков И.В. Электроразрядный метод синтеза наноуглерода из газообразного углеводородного сырья. ЭОМ. 2011, 47(4), 123–129.
- 14. Ризун А.Р., Денисюк Т.Д., Голень Ю.В., Кононов В.Ю., Рачков А.Н. Электроразрядная дезинтеграция и десульфация угля при изготовлении

водно-угольного топлива. *ЭОМ*. 2011, **47**(1), 113–115.

- Косенков В.М., Каменская Л.А., Старков Н.В. Определение давления на пластину в замкнутой разрядной камере. *Акуст. вісн.* 2005, 8(1-2), 64–68.
- Косенков В.М. Влияние длины канала высоковольтного разряда в воде на эффективность пластического деформирования цилиндрической оболочки. *ЖТФ*. 2011, **81**(10),133–139.
- Косенков В.М. Резонансные колебания цилиндрической стенки разрядной камеры в результате электрического разряда в воде. ПМТФ. 2011, (4), 43–51.
- Жекул В.Г., Поклонов С.Г., Смирнов А.П. Экспериментальное исследование эффективности электроразрядного воздействия на физической модели призабойной зоны продуктивного пласта. ЭОМ. 2011, 47(1), 101–105.
- Шептилевский А.В., Селезов И.Т., Косенков В.М. Трехмерная модель гидроупругой системы, ограниченной сферической оболочкой. *Мат. методи та фіз.-мех. поля.* 2012, **55**(1), 159–167.
- 20. Накоряков В.Е., Покусаев Б.Г., Шрейбер И.Р. Волновая динамика газо- и парожидкостных сред. М.: Энергоатомиздат, 1990. 248 с.
- 21. Лойцянский Л.Г. *Механика жидкости и газа*. М.: Наука, 1973. 848 с.
- 22. Сташкевич А.П. *Акустика моря*. Л.: Судостроение, 1966. 350 с.
- 23. Durst Franz. Fluid Mechanics: an Introduction to the theory of Fluid Flows. Berlin: Springer, 2008. 723 p.
- 24. Коннор Дж., Бреббиа К. *Метод конечных элементов в механике жидкости*. Л.: Судостроение, 1979. 264 с.
- Atkinson K., Han W. A Functional Analysis Framework. *Texts in Applied Mathematics. Theoretical Numerical Analysis.* 2009, **39**, 253–275.
- Xi L., Cen Z., Chen J. A Second-order Finite Difference Scheme for a Type of Black-Scholes Equation. *International Journal of Nonlinear Scien*ces. 2008, 6(3), 238–245.
- 27. Пирумов У.Г. Численные методы. М.: Дрофа, 2004. 224 с.

Поступила 22.12.12 После доработки 11.06.13

Summary

Dynamics of the gas cavity in an ideal compressible fluid with an input of pulse energy into it is investigated. The algorithm of interaction of pulsating bubble with a compressible liquid is developed. A comparative analysis of the dynamics of a bubble in incompressible compressible fluids is carried out.

Keywords: bubble, ideal compressible fluid, cavitation, dynamics of cavity, Rayleigh equation, spherical wave, electric discharge.