Микродуговое оксидирование при импульсной поляризации в гальванодинамическом режиме

П. С. Гордиенко^а, В. А. Достовалов^b, И. Г. Жевтун^a, И. А. Шабалин^b

^аФГБУН Институт химии ДВО РАН,

пр. 100-летия Владивостока, 159, г. Владивосток, 690022, Россия, e-mail: pavel.gordienko@mail.ru ^bДальневосточный федеральный университет, ул. Суханова, 8, г. Владивосток, 690950, Россия

Экспериментально подтвержден механизм перехода электрического пробоя в тепловой в поляризуемой системе металл-оксид-электролит при микродуговом оксидировании. Включение реактивного сопротивления позволяет формировать покрытия с регулируемой дефектностью и морфологией.

Ключевые слова: микродуговое оксидирование, пробой, импульсная поляризация, реактивное сопротивление.

УДК 621.794

ВВЕДЕНИЕ

Несмотря на широкое распространение метода микродугового оксидирования (МДО), остаются открытыми принципиальные вопросы, касающиеся механизма формирования зоны пробоя: что первично – тепловой или электрический пробой, возможно ли управлять в определенных пределах пробивными явлениями. От этого зависят технологические характеристики метода и свойства формируемых покрытий.

ОБСУЖДЕНИЕ ТЕОРЕТИЧЕСКИХ ПОЛОЖЕНИЙ

При монополярном потенциодинамическом режиме формирования оксидных слоев (независимо от потенциалов формирования) регистрируется только анодная составляющая процесса формирования покрытия. Но, как известно, при таких условиях поляризации образца сформированная в поверхностном слое оксида область пространственного заряда не претерпевает перезарядки, и это должно сказываться на свойствах сформированного оксидного слоя. Он формируется в неравновесных термодинамических условиях при постоянном воздействии внешнего электрического поля. Ширина области пространственного заряда L, формируемого в оксидном слое, определяется электрофизическими свойствами и может быть рассчитана с использованием уравнения Пуассона:

$$L = \sqrt{\frac{2\varepsilon\varepsilon_0\left(\varphi_\kappa + U\right)}{eN}},\tag{1}$$

где ε – диэлектрическая проницаемость оксидного слоя, сформированного на аноде; ε_0 – электрическая постоянная, равная (в системе СИ) 8,854·10⁻¹² Ф/м; ϕ_{κ} – контактная разность потенциалов, В; U – потенциал формирования, В; e – заряд электрона 1,602·10⁻¹⁹ К; N – концентрация носителей, 1/см³.

В приповерхностной области формируемого оксидного слоя при потенциалах формирования U_ф образуется слой с пониженной проводимостью по отношению к объему сформированного слоя. В этой области покрытия напряженность электрического поля, естественно, будет превышать напряженность в любой другой области оксидного слоя и в момент пробоя достигнет критических значений, превышающих ~ 10⁸ B/м. Следует учесть, что в области пространственного заряда при напряженности электрического поля, близкой к пробойной, активированы все центры, способные «участвовать» в процессе переноса заряда. Этим и объясняется наличие локальных связанных положительных зарядов. Такой участок оксидного слоя следует рассматривать как область материала, находящегося в неравновесном термодинамическом состоянии, поддерживаемом внешним электрическим полем (поляризующим напряжением). Разрушить данный слой возможно двумя путями: во-первых, снять внешнее поляризующее поле, и тогда электрический заряд приповерхностной области оксида будет скомпенсирован основными носителями (электронами) из металла, или, во-вторых, увеличить напряженность внешнего электрического поля до критических значений, при которых в оксидный слой со стороны электролита инжектируются электроны в результате окисления анионных «элементов» электролита. Наиболее вероятными и доказанными в водных электролитах (при описываемых условиях) являются процесс окисления O²⁻ до О и инжекция электронов в поверхностный слой оксида. Этот процесс следует рассматривать как элемент механизма электрического пробоя в системе металл-оксид-электролит. В данном случае в оксидном запорном слое в силу высокой напряженности электрического поля образуются каналы с высокой плотностью инжектированных электронов, что приводит к формированию канала с высокой температурой, в предельном случае – это область формирования теплового пробоя. При таких условиях в указанной области резко повышается перенос заряда не только инжектированными электронами, но и ионами (как металла, так и кислорода). Это приводит к росту оксидного слоя, если предельные тепловые нагрузки, возникшие в локальных каналах, не превышают энергию диссоциации образовавшегося материала. В противном случае наблюдается интенсивное разрушение образовавшегося до названных явлений оксидного слоя. При увеличении проводимости в системе металл-оксид-электролит область пространственного заряда разрушается. При таких условиях в формировании поверхностного слоя основную роль играют не электрохимические, а плазмо- или термохимические процессы. После пробоев распределение химических элементов по сечению покрытия изменяется и после «остывания» (охлаждения) зоны пробоя локальный объем последний имеет термодинамически более устойчивую структуру.

До пробоя рост покрытия (оксидного слоя) происходит за счет «переноса» ионов, которые образуются на границах раздела оксид–электролит, в двойном электрическом слое и на границе раздела металл–оксид. Зависимость ионного тока от напряженности электрического поля в системе металл–оксид–электролит описывается уравнением А. Гюнтершульце, Г. Бетц или Янга-Цобеля:

$$j = j_0 e \beta \frac{\Delta \phi}{d} = j_0 e \frac{\alpha z F \cdot a}{RT} E, \qquad (2)$$

где α – коэффициент перехода; z – заряд (валентность окисляемого элемента); j_0 – плотность тока обмена, A/m^2 ; a – постоянная решетки образовавшегося оксида; F – число Фарадея (9,648456·10⁷ к·кмоль⁻¹); R – газовая постоянная, 8,31441·10³ Дж/(к·моль·град); $\Delta \varphi$ – разность потенциалов пленки, В; d – толщина пленки, м; E – напряженность поля, В/м; величина $\frac{\infty z F \cdot a \Delta \varphi}{d}$ есть энергия активации движения

иона в электрическом поле кристалла.

Ионный ток вызывает рост оксидного слоя согласно закону Фарадея.

В случае высоких потенциалов формирования происходит не только рост оксидного слоя, но и его растворение. Изменение толщины оксидного слоя при этом описывается уравнением

$$\frac{d(d)}{dt} = (i - i_{\kappa}) \frac{M}{z \cdot F \cdot \rho \cdot S},$$
(3)

где M – молярная масса образовавшегося оксида; ρ – плотность оксида, кг/м³; S – площадь анода, м²; i_{κ} – ток растворения оксида.

При потенциалах пробоя к процессу электрохимического растворения добавляются процессы разрушения оксидного слоя термическими процессами в плазменном объеме.

В работе [1] было показано, что до потенциалов формирования оксидного слоя на титановых сплавах в водном электролите $Na_3PO_4 \cdot 12H_2O$ с концентрацией C = 10 г/л, равным в пределах 200 В, толщина оксидного слоя достигает 2–2,5 мкм, а с дальнейшим повышением потенциала рост пленки описывается уравнением

$$d = d_k \exp\left(k(U_\phi - U_{\kappa p}),\right)$$
(4)

где $U_{\kappa p}$ – критическое напряжение, при котором на аноде наблюдается процесс искрения (свечение); d_{κ} – толщина оксидного слоя, сформированного до начала процесса искрения; U_{ϕ} – потенциал формирования оксидного слоя.

Искрение связано с пробоями оксидного слоя при напряженностях электрического поля в оксиде ~ $(1-2)\cdot 10^8$ В/м. Такая величина напряженности электрического поля в формируемом оксидном слое должна быть и на начальных временных зависимостях роста оксидного слоя при определенных значениях скорости (нарастания) развертки потенциала формирования при потенциодинамическом режиме. Но отсутствие соответствующих устройств регистрации мгновенных значений тока и напряжения при коротких временах импульсной поляризации не позволяло подтвердить это экспериментально.

Следует отметить, что пробой оксидного слоя является неотъемлемой частью процесса формирования оксидного слоя, но он может и не наблюдаться в виде искрения (световых явлений), если энергия, приходящаяся на один акт переноса ионов металла и кислорода, меньше энергии диссоциации оксида. Только в случае значительного превышения затрат энергии на единицу перемещения ионов (электронов) имеет место выделение энергии в виде тепла, то есть энергия внешнего электрического поля расходуется не только на образование оксидного слоя (в локальном объеме), но и на разогрев и выделение тепла, что и приводит в конечном итоге к разрушению пленки. Но при дозированном поступлении энергии в зону пробоя оксидный слой не разрушится, а его нагрев до высоких температур (не связанных с деструкцией материала) приведет к «совершенствованию» структуры – к отжигу дефектов. В исследуемой системе металл– оксид–электролит в равновесном, установившемся режиме при подаче положительного поляризующего напряжения на металл область электролита, контактирующая с оксидом, имеет отрицательный заряд. Причем в силу высокой концентрации ионов в электролите ширина области отрицательного объемного заряда со стороны электролита будет значительно меньше, чем область положительного объемного заряда в оксидном слое.

Исследуемую структуру металл-оксид-электролит по поведению под напряжением формальследует рассматривать как но резкий п-р-переход. Условность эта объясняется соотношением концентраций носителей электрических зарядов. Но электролит и оксид имеют носители тока различной природы – это, во-первых. Во-вторых, проводимость в такой системе даже под электрическим полем возможна только в случае прохождения электрохимической реакции на границе раздела оксид-электролит. Поэтому механизмы формирования каналов пробоя в *n-p*переходе и в исследуемой системе будут отличаться.

Образовавшуюся область пространственного заряда в оксиде следует рассматривать как одну из обкладок плоского конденсатора, заряженную положительно неподвижными зарядами при положительном поляризующем напряжении на металле. Противоположная по знаку заряда обкладка (отрицательная) «сосредоточена» в тонком двойном электрическом слое Гельмгольца – если система металл–оксид находится в электролите, или в слое адсорбированных акцепторных газов, расположенных на поверхности оксида, – если металл–оксид находится в соответствующей газовой среде.

Наиболее вероятной реакцией в этом случае в водных электролитах при формировании пассивирующих слоев является образование O²⁻ в результате действия электрического поля:

$$OH^{-} \rightarrow O^{2-} + H^{+} . \tag{a}$$

Образовавшийся ион O²⁻ участвует не только в образовании пассивирующего оксидного слоя, но и (наряду с другими ионами в электролите) в формировании заряда одной из обкладок электрической емкости в системе металл–оксид– электролит.

При повышении потенциала формирования оксидного слоя выше определенных величин

наблюдается сначала снижение тока формирования ввиду высокой энергии активации дрейфа ионов O²⁻ и M⁺ через этот слой. При критических потенциалах поляризации имеет место «разряд» электрической емкости системы металл–оксид– электролит. Но разряд или повышенные токи «утечки» в такой системе возможны только при переносе заряда через указанный слой, а это не что иное, как пробой оксидного слоя.

Это возможно только в случае восстановительных процессов на аноде, например разряд O^{2-} в электрическом поле и инжекция электронов в оксид:

$$O^{2-} \rightarrow O + 2\overline{e};$$
 (6)
 $O + O \rightarrow O_{2\uparrow}.$

Подтверждением этого процесса являются выделение кислорода на аноде и резкое возрастание тока.

Рис. 1. ВАХ *п-р*-перехода: 0-А – диапазон, в котором выполняется закон Ома; А-В – зенеровский пробой; В-С – тепловой пробой.

В исследуемой системе при критических потенциалах под воздействием сил электрического поля образуются не парные заряды электрондырка, как в классических электронно-дырочных переходах [2], что приводит к увеличению тока через переход, а в обедненную область пространственного заряда, сформированного ионизированными центрами, инжектируются электроны, например в результате реакции (б). В «области» обкладки двойного электрического слоя co стороны электролита появляются нейтральные атомы кислорода, продукты окисления анионов электролита, протоны и другие продукты реакции. Таким образом, данная система принципиально отличается механизмом

образования зарядов при формировании каналов пробоя. Если в электронно-дырочном переходе при обратном напряжении ток увеличивается и вольт-амперная характеристика (ВАХ) имеет характерный вид (рис. 1), определяемый интенсивностью образования парных носителей тока, то подобная зависимость в исследуемой системе определяется механизмом образования как окисленных и восстановленных ионов, так и нейтральных продуктов реакции в электролите на электродах (например, выделение кислорода на аноде, а на катоде – водорода) и инжекцией электронов в оксидный слой.

Как в классическом электронно-дырочном переходе, так и в исследуемой системе металлоксид-электролит локальное увеличение тока может приводить к тепловому пробою, сопротивление при этом в локальном месте резко падает. В предельном случае тепловой пробой приводит к разрушению оксидного слоя [3].

МЕТОДИКА ЭКСПЕРИМЕНТА

Для получения реальных ВАХ исследуемой системы металл-оксид-электролит и параметров процесса оксидирования разработана установка, включающая источник питания для микродугового оксидирования, блок формирования заданных законов изменения тока и напряжения, скважности; систему измерения и регистрации мгновенных значений тока и напряжения формирования U_ф во всём временном интервале проведения эксперимента. Управляющий комплекс выполнен на базе персонального компьютера, укомплектованного платой АЦП/ЦАП (анолого-цифрового и цифроаналогового преобразования) типа L-791. Диапазон стабилизации выходного напряжения – 0–450 В, максимальная длительность непрерывного процесса – 10000 с, максимальное число входных регистрирующих каналов – 16, максимальная частота регистрации 400 кГц. Разработанные программы позволили получить данные по количеству затраченного электричества и энергозатрат в анодный и катодный периоды формирования плёнок.

Для перевода импульсного поляризующего напряжения в импульсный гальванодинамический режим в электрохимическую цепь включено регулируемое реактивное сопротивление (регулируемая величина индуктивности). Эквивалентная электрическая схема электрохимической цепи оксидирования приведена на рис. 2. В установке предусмотрено изменение индуктивности в пределах 0,1–0,8 Гн. Скорость повышения поляризующего напряжения до максимально выбранного формирования напряжения в данных экспериментах составляла 2–10 В/с. В качестве материала исследуемых образцов взят сплав титана ВТ1-0. Размер образцов – $6\times30\times1$ мм² (площадь поверхности – 432 мм²). Оксидирование образцов проводили в фосфатном электролите (Na₃PO₄·12H₂O, 10 г/л). Величина индуктивности, включённой последовательно с поляризуемым образцом – 0,58 Гн. Периоды следования поляризующих импульсов *T* – 3 и 5 мс с коэффициентом заполнения *D*: 0,2; 0,4; 0,6; 0,8. Напряжение формирования U_{ϕ} , В: 70; 100; 150; 250; 300. Время формирования оксидного слоя *t* составляло 420 секунд.

Рис. 2. Эквивалентная электрическая схема электрохимической цепи анод – оксид – катод – реактивное сопротивление (L_p) ; r_0 – сопротивление электролита; $C_{n\pi}$ – электрическая емкость оксидного слоя; $R_{n\pi}$ – активное сопротивление оксидного слоя; $R_{\pi\pi}$ – нелинейное сопротивление зоны теплового пробоя; $U_{n\pi}$ – напряжение на электрохимической ячейке; U_{ϕ} – напряжение тиристорного источника.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

В табл. 1–3 представлены результаты автоматической компьютерной обработки процесса микродугового формирования оксидного слоя: количество затраченного электричества в анодный It_a и катодный It_{κ} периоды и их разность ΣIt ; энергозатраты в анодный Pt_a и катодный Pt_{κ} периоды и их разность ΣPt ; потенциал на плёнке $U_{n,i}$; напряженность электрического поля в плёнке *E*. Для расчёта толщины оксидного слоя использовали данные по затрате количества электричества в анодный период за вычетом катодной составляющей.

В разработанной системе регистрируются изменения тока и напряжения во всём временном интервале оксидирования, в том числе и за время поляризующего импульса, что позволило получить данные, касающиеся реакции оксидного слоя, сформированного до поляризующего импульса. На основе этих данных строятся ВАХ оксидного слоя (рис. 3, 4), t_1-t_2 – временной интервал, в течение которого проводится анализ взаимосвязи тока и напряжения.

При регистрации приведенных временных зависимостей фиксируется значительная доля катодного количества электричества (табл. 1–3). Катодная составляющая тока – это разрядный ток электрической ёмкости, обусловленной областью пространственного заряда в системе металл–оксид–электролит. В данной работе не ста-

N⁰	<i>t</i> , c	D	U_{ϕ} ,	U_{nn} ,	$\Sigma It,$	$\sum Pt$,	It_a ,	It_{κ} ,	Доля ка-	Pt_a ,	Pt_{κ} ,	$E \cdot 10^8$,
п/п			B	В	A·c	Вт.с	A·c	A·c	тодн. то-	Вт.с	Вт.с	В/м
									ка, %			
T = 3 mc												
1		0,2		93,93	7,55	1082,67	19,45	11,9	61	929,18	153,49	1,03
2	420	0,4	150	206,81	4,94	2957,36	21,74	16,8	77	2541,9	415,46	3,36
3		0,6		226,62	9,25	3497,32	24,26	15,0	61	3027,52	469,8	1,95
4		0,8		216,12	11,15	2724,14	19,1	7,94	41	2294,40	429,74	1,54
	T = 5 Mc											
5		0,2		182,43	6,66	2074,29	21,52	14,86	69	1843,33	230,96	2,18
6	420	0,4	150	246,62	10,96	3660,15	27,05	16,10	59	3346,59	313,56	1,8
7		0,6		232,75	9,26	2848,0	20,46	11,21	55	2536,52	311,48	2
8		0,8		211,12	7,79	2107,26	14,74	6,94	47	1848,84	258,42	2,16

Таблица 1. Параметры процесса МДО при T = 3 и 5 мс, U = 150 В

Таблица 2. Параметры процесса МДО при T = 5 мс, U = 70 и 100 В

N⁰	<i>t</i> , c	D	U_{ϕ} ,	U_{nn}, \mathbf{B}	$\sum It$,	$\sum Pt$,	It _a ,	It_{κ}	Доля ка-	Pt_a ,	Pt_{κ} ,	$E^{.}10^{8}$,
п/п			B		A·c	Вт.с	A·c	A·c	тодного	Вт.с	Вт.с	В/м
									тока, %			
1		0,2		24,31	9,34	317,64	15,76	6,41	40	267,94	49,7	0,2
2	420	0,4	70	109,43	5,54	1244,85	19,67	14,13	70	1056,85	188,00	1,57
3		0,6		111,56	6,2	1314,77	19,01	12,81	67	1107,29	207,48	1,43
4		0,8		100,81	5,6	890,81	12,28	6,67	54	692,26	198,55	1,42
5		0,2		70,18	6,15	820,5	19,46	13,31	68	700,29	120,21	0,9
6	420	0,4	100	142,25	9,03	2139,56	23,59	14,55	61	1918,33	221,23	1,26
7		0,6		134	12,29	2524,65	26,44	14,14	53	2258,64	266,01	0,87
8		0.8]	142.12	6.03	1448.04	14.16	7.86	55	1177.53	270.51	1.89

Таблица 3. Параметры процесса МДО при T = 5 мс, U = 250 В и U = 300 В

N⁰	<i>t</i> , c	D	U_{ϕ} ,	$U_{n\pi}$,	$\sum It$,	$\sum Pt$,	It_a ,	It_{κ} ,	Доля	Pt_a ,	Pt_{κ} ,	$E \cdot 10^8$,
п/п			B	В	Ā·c	В т·с	A·c	A·c	катодн.	Вт с	Вт.с	В/м
									тока, %			
1		0,2		282,5	12,19	5137,2	29,55	17,35	58	4786,1	351,1	1,85
2	420	0,4	250	308,68	20,29	8032,53	37,36	17,07	45	7618,68	413,85	1,21
3		0,6		311,62	25,58	8434,96	39,53	13,95	35	8043,09	391,87	0,97
4		0,8		310,5	22,66	6782,42	31,13	8,47	27	6434,25	348,17	1
5		0,2		325,87	12,50	6225,54	28,57	16,07	56	5865,26	360,28	2
6	420	0,4	300	351,87	23,29	9923,81	38,93	15,64	40	9509,55	414,26	1,2
7		0,6		357,18	26,88	10710,5	40,77	13,89	34	10267,63	442,87	1,06
8		0,8		365,31	29,06	10018,75	38,46	9,40	24	9583,95	434,8	1

вилась задача установления взаимосвязи этих процессов со свойствами оксидного слоя, хотя такая зависимость существует, и разработанная система регистрации позволит установить её количественно. С уменьшением коэффициента заполнения поляризующих импульсов увеличивается доля катодной составляющей тока. Исключение составляет процесс оксидирования при низких потенциалах, когда на оксидном слое при напряжении до 30 В зафиксировано значение катодной составляющей тока ~ 40%, и при высоких потенциалах формирования, когда значение катодной составляющей снижается до 24%. Это связано с электрофизическими свойствами системы металл-оксид-электролит, в которой переменными являются сопротивление оксидного слоя *R* и электрическая ёмкость *C*. Они и определяют постоянную разряда (T = RC). С увеличением коэффициента заполнения импульсов ёмкость разряжается значительно меньше, чем и обусловлено снижение доли катодной составляющей тока.

Рис. 3. Временные зависимости (а) поляризующего напряжения (1), тока (2), потенциала (3) на поляризуемом электроде. Вольт-амперная характеристика (б) металл–оксид–электролит за время действия поляризующего импульса $t_1 - t_2$ (период следования импульсов T = 3 мс, коэффициент заполнения D = 0.4; время формирования t = 20.9 с).

Из временных зависимостей тока и напряжения формирования оксидного слоя в начальные временные интервалы (4-20 секунд) построены ВАХ (рис. 3б), которые имеют вид, характерный для начала процесса перехода электрического пробоя в тепловой для *n-p*-переходов полупроводников. За этот временной период формирования оксида не фиксируется катодная составляющая тока, не наблюдается выделение кислорода и нет других побочных реакций, кроме формирования оксидного слоя, поэтому всё количество электричества, согласно закону Фарадея, расходуется на рост оксидного слоя. Рассчитаны толщина оксидной пленки d_{nn} и напряжённость электрического поля Е в ней (табл. 4). Независимо от частоты следования и коэффициента заполнения поляризующих импульсов величина напряженности электрического поля в формируемом оксидном слое находится в пределах 2-4·10⁸ В/м. С увеличением скорости подъёма поляризующего потенциала с 5 до 8,3 В/с при D = 0,4 и через 4, 10, 20 секунд напряжённость электрического поля формирования оксида не выше приведённых величин.

Для оксидных слоёв, формируемых на образцах в течение 420 секунд, также рассчитана напряжённость электрического поля в оксиде (табл. 1–3). Расчёты проведены без учёта затрат определённого количества электричества на выделение кислорода и процессы растворения. Но даже в этом случае рассчитанные значения напряжённости электрического поля роста оксидного слоя не менее 10⁸ В/м. Эти величины ниже рассчитанных для оксидных слоёв, формируемых в начальные периоды роста плёнок, где не наблюдается газовыделения. И, по-видимому, с учётом затрат количества электричества на названные процессы реальные величины напряжённости электрического поля в оксиде будут приближаться к значениям, полученным для тонких оксидных плёнок.

Рис. 4. Временные зависимости (а) поляризующего напряжения (1), тока (2), потенциала (3) на поляризуемом электроде. Вольт-амперная характеристика (б) металл–оксид–электролит за время действия поляризующего импульса $t_1 - t_2$ (T = 3 мс, D = 0,4; t = 115,13 с).

Таблица 4. Напряженность электрического поля E в формируемой пленке и ее толщина d_{na} (U = 150 B)

N₂	D	Τ,	<i>t</i> , c	U_{nn} ,	$\sum It$,	d_{nn} ,	$E \cdot 10^8$,
п/п		мс		В	A·c	МКМ	B/m
1	0,2	3	16,9	20,5	0,5	0,0625	3,28
2	0,4		16,6	38,7	1	0,125	3
3	0,6		16,5	57,3	1,06	0,1325	4,3
4	0,8		16,7	70,9	1,42	0,177	4
5	0,2		16,6	26,2	6,6	0,825	0,3
6	0,4	5	20,9	65	1,6	0,2	3,25
7	0,6		120	206	6,3	0,78	2,64

По данным рентгенофазового анализа образцов, выполненного на приборе D8 ADVANCE, следует, что при всех описываемых режимах при потенциалах 70–350 В формируется анатазная модификация диоксида титана (удельная плотность которой равна 3,8 г/см³, а диэлектрическая проницаемость $\varepsilon_0 \approx 30$ [4]).

Следует учесть, что в рассматриваемом случае процесс формирования происходит при гальванодинамическом режиме и с реактивным сопротивлением в электрохимической цепи. Поэтому в момент развития пробоя при резком увеличении скорости изменения тока наблюдается уменьшение потенциала формирования, то есть автоматическое «гашение» зоны пробоя. Естественно, температурный режим в зоне образования пробоя при таком способе формирования оксидного слоя будет отличаться от режимов при импульсной поляризации без реактивного сопротивления. В зоне пробоя температура будет ниже, чем при таких же потенциалах формирования без реактивного сопротивления.

Рассмотрим эквивалентную электрическую схему электрохимической ячейки (см. рис. 2). В момент пробоя сопротивление зоны пробоя R_{3n} резко снижается, ток в цепи Іф возрастает, и сопротивление реактивного элемента цепи, которое реагирует на скорость изменения тока, также возрастает. Это приводит к перераспределению потенциалов в системе зона пробоя-электролитреактивное сопротивление, и микродуга гаснет. Затраты энергии на нагрев электролита при таком режиме формирования снижаются в несколько раз по сравнению с режимами, при которых в электрохимической цепи, при равных потенциалах, не включено реактивное сопротивление. Изменение режима формирования приводит к изменению морфологии и шероховатости поверхности, изменяются также концентрация и диаметр зон пробоя (рис. 5), фазовый и элементный составы оксидного слоя [5, 6]. Интенсивное газовыделение наблюдается при более высоких потенциалах.

Рис. 5. Поверхность образца после МДО (X 5000): (a) – U = 200 В, L = 0 Гн; (б) – U = 200 В, L = 0,58 Гн.

Для образцов, обработанных в течение 420 секунд, методом вольт-фарадных характеристик [7] было проведено исследование зависимости обратной величины квадрата электрической ёмкости сформированных оксидных слоёв от потенциала и рассчитаны концентрации зарядов N_d в них (в пределах $1-2\cdot10^{15}$ см⁻³). Величину электрической ёмкости рассчитывали, используя уравнение (1).

выводы

Разработанная система позволяет регистрировать в режиме реального времени мгновенные значения тока и потенциала формирования оксидного слоя при заданном импульсном гальванодинамическом режиме, фиксировать затраты количества электричества и энергозатраты в анодный и катодный периоды.

На основании полученных данных экспериментально доказано, что развитие теплового пробоя в оксидных слоях при микродуговом оксидировании металлов и сплавов в электролитах проходит через фазу электрического пробоя в системе металл–оксид–электролит. ВАХ оксидного слоя в момент пробоя качественно соответствует ВАХ *n-p*-перехода для полупроводников в момент пробоя, но механизмы образования носителей заряда различны.

Рассчитаны напряжённости электрического поля при формировании оксидного слоя. Для тонких слоёв её величина составляет порядка 2-9·10⁸ В/м, что выше электрической прочности для массивных образцов диоксида титана (~ 2,7·10⁷ В/м [8]). Повышенные значения потенциалов пробоя не противоречат известным фактам, свидетельствующим о том, что для тонких оксидных слоёв напряженность поля пробоя выше, чем для массивных образцов. Полученные расчетные значения предельной электрической прочности оксидного слоя при импульсной поляризации с частотой 330 Гц, при скважности 0,2 составляют (0,9–2)·10⁹ В/м, что характерно для теплового пробоя.

Полученные поляризационные зависимости при импульсной поляризации титанового электрода однозначно дают ответ на вопрос о механизме пробоя в формируемых оксидных слоях на поверхности вентильных металлов, характерным представителем которых является титан.

Импульсная поляризация образцов с контролируемым по величине реактивным сопротивлением позволяет формировать покрытия в гальванодинамическом режиме, получать данные по кинетике роста оксидного слоя и фиксировать релаксационные процессы, связанные с перезарядкой электрических емкостей в системе металл-оксид-электролит. Регистрация временных изменений тока и напряжения на электроде позволяет сделать вывод о механизме процесса формирования оксидных слоев и механизме образования зон с тепловым пробоем.

ЛИТЕРАТУРА

- Гордиенко П.С. Образование покрытий на аноднополяризованных электродах в водных электролитах при потенциалах искрения и пробоя. Владивосток: Дальнаука, 1996. 216 с.
- 2. Абдуллаев Г.Б., Искандер-Заде З.А. *Некоторые* вопросы физики электронно-дырочных переходов. Баку: ЭЛМ, 1971. 246 с.
- Гордиенко П.С., Василенко О.С., Панин Е.С. и др. Формирование покрытий на вентильных металлах и сплавах в электролитах с емкостным регулированием энергии при микродуговом оксидировании. Защита металлов. 2006, 42(5), 500–505.
- 4. Самсонов Г.В., Борисова А.Л., Жидкова Т.Г. и др. *Физико-химические свойства окислов*. Справочник. Металлургия, 1978. 472 с.
- Гордиенко П.С., Панин Е.С., Достовалов В.А., Усольцев В.К. Вольт-амперные характеристики системы металл-оксид-электролит при поляризации электродов импульсным напряжением. Физикохимия поверхности и защита материалов. 2009, 45(4), 433–440.

- 6. Гордиенко П.С., Супонина А.П., Харченко У.В. и др. Особенности микродугового оксидирования титана с ограничением токов в каналах пробоя. *Коррозия: материалы, защита.* 2010, (4), 37–42.
- Гордиенко П. С., Гнеденков С. В., Синебрюхов С.Л., Скоробогатова Т.М. Изменение свойств МДО-покрытий в процессе оксидирования. Электронная обработка материалов. 1992, (5), 35–39.
- 8. *Таблицы физических величин*. Справочник. Под ред. И.К. Кикоина. М.: Атомиздат, 1976. 1008 с.

Поступила 06.06.12 После доработки 05.07.12 Summary

The mechanism of transition of the electrical breakdown into thermal one at micro arc oxidation has been confirmed in the polarized metal-oxide-electrolyte system. Inclusion of reactance into the circuit makes it possible to form coatings with controlled morphology and defectiveness.

Keywords: micro arc oxidation, breakdown, pulse polarization, reactance.