Исследование заряженных струй: сравнение теории с экспериментом

А. И. Жакин, П. А. Белов

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Юго-Западный государственный университет", ул. 50 лет Октября, 94, г. Курск, 305040, Российская Федерация, e-mail: <u>zhakin@mail.ru</u>

Приводится теоретический расчет критериев неустойчивости и критических длин волн заряженных струй при быстрой релаксации зарядов. Показано удовлетворительное соответствие теории с экспериментом.

Ключевые слова: электрическое поле, электрический ток, электрод, жидкость, струя, заряд, поверхностное натяжение, вязкость.

УДК 537.58

ВВЕДЕНИЕ

Динамика заряженных струй вызывает большой интерес, не только научный [1], но и практический, и прежде всего в связи с проблемой диспергирования жидкостей [2]. В данной работе дается общая постановка задачи о динамике слабопроводящей жидкости со свободной поверхностью, находящейся в высоковольтном электрическом поле, с учетом конечной поверхностной проводимости. Выводится дисперсионное уравнение, определяющее связь между комплексной частотой и волновыми числами малых возмущений, которое решено численно при быстрой релаксации зарядов. Проверка теоретических расчетов с экспериментом (для случая водных струй) показала удовлетворительное соответствие.

1. ФОРМУЛИРОВКА КРАЕВОЙ ЗАДАЧИ

Рассматриваются две несмешивающиеся несжимаемые жидкости (одна из которых может быть газом), разделенные свободной поверхностью раздела (рис. 1).

Общая формулировка основной системы уравнения и граничных условий должна учитывать вязкость и проводимость жидкостей, а также физико-химические свойства поверхности раздела. В условиях омической проводимости основная система уравнений имеет следующий вид [3]:

$$\rho_i dV_i / dt = -\nabla p'_i + \eta_i \Delta V_i + q_i E_i,$$

div $V_i = 0,$ (1)

$$\operatorname{div}(\varepsilon\varepsilon_0 \boldsymbol{E}_i) = \boldsymbol{q}_i, \ \boldsymbol{E}_i = -\nabla \Phi_i;$$

$$\partial q_i / \partial t + \operatorname{div} \boldsymbol{j}_i = 0.$$

Здесь нижний индекс *i* обозначает значения соответствующих величин в областях Ω_i , в которых находится верхняя (*i* = 1) и нижняя (*i* = 2) жидкости; ρ_i – плотность; V_i – скорость; p'_i – суммарное (гидродинамическое и стрикционное) давление; η_i – динамическая вязкость; ε , ε_0 – относительная и абсолютная диэлектрические проницаемости соответственно; E_i , Φ_i – напряженность и потенциал электрического поля; q_i – объемный заряд; j_i – объемная плотность электрического тока.

Граничные условия на поверхностях электродов S_1 (анод), S_2 (катод) и на границе раздела Sдвух несжимаемых и несмешивающихся жидкостей имеют вид:

$$(S_1): \Phi_1 = U, V_1 = 0; (S_2): \Phi_2 = 0, V_2 = 0;$$
(3)

(S):
$$\langle \mathbf{V} \rangle = 0, \quad -\partial F / \partial t \left| \nabla F \right|^{-1} = V_{1n} = V_{2n},$$
 (4)

$$\left[\left\langle p_{ik}\right\rangle + \left\langle T_{ij}\right\rangle\right]n^{j} = 2\alpha H n^{i}, \qquad (5)$$

$$\langle \Phi \rangle = 0, \ \langle \epsilon \epsilon_0 E_n \rangle = q_s, \ q_s = \sum_i e_i n_{si},$$
 (6)

$$\partial n_{si} / \partial t + \operatorname{div}_{s} \left(\mathbf{i}_{si}^{*} + n_{si} \mathbf{V}_{t} \right) - 2H \, n_{si} \mathbf{V}_{1n} = -\left\langle \mathbf{i}_{in}^{*} \right\rangle + \dot{\boldsymbol{\xi}}_{si}. \tag{7}$$

Здесь F(x, y, z) = 0 – уравнение свободной поверхности; V_{1n} , V_{2n} – нормальные, V_t – тангенциальная компоненты скорости на S; n^k – компоненты нормали к S; α – коэффициент поверхностного натяжения; Н - средняя кривизна поверхности; p_{ik} , T_{ij} – тензоры механических и максвелловских напряжений; n_{si} , i_{si}^* – частичные поверхностные плотность зарядов и миграционного потока зарядов *i*-й компоненты; q_s – суммарная плотность поверхностного заряда; $\dot{\xi}_{si}$ – поверхностная скорость образования і-й компоненты; div_s – операция поверхностной дивергенции [4]. Условия (3) определяются заданием напряжения на электродах и прилипанием вязкой жидкости; (4) – кинематические, (5) – динамические; (6) – электродинамические условия; (7) – баланс поверхностных зарядов *i*-го сорта на S, угловые скобки обозначают скачок соответствующей величины при переходе через поверхность, например $\langle p' \rangle = p'_2 - p'_1$.

Рис. 1. Геометрия области: *S* – свободная поверхность; *S*₁, *S*₂ – электроды.

Так как динамика жидкостей определяется процессами на свободной поверхности, то необходимо детально формулировать на ней граничные условия. Прежде всего, отметим, что с микроскопической точки зрения принято считать, что граница раздела несмешивающихся жидкостей имеет толщину порядка нескольких молекулярных слоев [5], а на ионы вблизи поверхности влияют короткодействующие поляризационные силы, направленные в сторону более поляризующейся жидкости. Таким образом, поверхность раздела всегда является адсорбентом ионов. Именно это обстоятельство приводит к заряжанию водных капель в воздухе, насыщенном ионами. Скорость поверхностной адсорбции в общем случае определяется соотношением $\dot{\xi}_{si}^{+} = k_{ad} f_{s} n_{i}$, десорбции – $\dot{\xi}_{si}^{-} = k_{de} n_{si}$ [6], где $k_{ad}(k_{de})$ – коэффициент адсорбции (десорбции); $f_{s} = 1 - n_{si}/n_{s0}$ – коэффициент заполнения, n_{s0} – плотность адсорбционных центров. Таким образом, скорость поверхностного захвата ионов за адсорбционных сил выражается счет как $\dot{\xi}_{si} = k_{ad} f_s n_i - k_{de} n_{si}$

Коэффициенты kad, kde можно оценить следующим образом. При захвате ионов из газовой фазы $\dot{\xi}_{si}^{+} = (\beta_i/4) \bar{c}_i n_i$ [4], где β_i – коэффициент аккомодации; \bar{c}_i – тепловая скорость ионов. Если ионы проникают через поверхность в глубь жидкости, то они поляризационными силами отталкиваются от нее и концентрируются в плотной и диффузионной частях поверхностного слоя. В этом случае $k_{de} = 0$. В случае физически адсорбированных ионов [6] $k_{de} = v_s \exp(-U_A/k_BT)$, где v_s – частота тепловых колебаний адсорбированного иона; U_A – энергия связи с поверхностью. В случае поверхности раздела жидкость-жидкость за счет действия поляризационных короткодействующих сил адсорбируются ионы из менее полярной среды в более полярную. Если ионы не образуют химические связи, то в силу активационного характера движения ионов $k_{ad} = v_s r_s \exp(-U_s/k_B T)$, где r_s – радиус захвата, U_s – энергия взаимодействия иона с поверхностью, причем $U_s < 0$. Например, в случае поляризационных сил

$$U_{s} = -\frac{\beta}{r_{s}}, \quad \beta = \frac{e^{2}}{16\pi\varepsilon_{2}\varepsilon_{0}}\frac{\varepsilon_{2}-\varepsilon_{1}}{\varepsilon_{2}+\varepsilon_{1}}, \quad (\varepsilon_{2} > \varepsilon_{1}); \quad k_{de} = 0.$$

Проведенные рассуждения показывают, что в общем случае пренебрегать адсорбционнодесорбционными процессами на свободной поверхности не корректно. Более того, наши исследования [7] показали, что адсорбционные процессы могут существенно изменять свойства поверхности раздела, например изменять поверхностное натяжение.

Сформулированная задача описывает поведение жидкостей не только в геометрии рис. 1, но и в общем случае (плоских поверхностей, капель и т.д.). В случае капель, например, задается не разность потенциалов, а величина поверхностного заряда q_{s0} в равновесном состоянии. Еще раз подчеркнем, что состояние жидкостей определяется динамикой свободной поверхности, поэтому часто используют термин "устойчивость свободной поверхности", который мы будем применять в дальнейшем. Устойчивость свободной поверхности обычно исследуют методом малых возмущений, которые представляют в виде суммы по нормальным модам. Далее находят наиболее опасную моду возмущений и параметры, при которых возмущения возрастают с течением времени. Такова схема вычислений, представленных далее.

2. РЕЗУЛЬТАТЫ ТЕОРЕТИЧЕСКИХ ИССЛЕДОВАНИЙ УСТОЙЧИВОСТИ ЦИЛИНДРИЧЕСКИХ СТРУЙ

Будем считать, что струя контактирует с воздухом, в невозмущенном состоянии ее радиус равен *R*, а поверхность равномерно заряжена поверхностным зарядом $q_{s0} = e(n_{s1}^0 - n_{s2}^0) = \varepsilon_0 E_0$, где, как и в плоском случае, n_{si}^0 – постоянные поверхностные концентрации положительных (*i* = 1) и отрицательных (*i* = 2) зарядов. В цилиндрической системе координат (*r*, φ , *z*), ось *z* которой направлена вдоль оси симметрии, для поля вне струи получаем $E_r = E_0 R/r$, где *r* – радиальная координата, а поле внутри струи равно нулю. Опыты и расчеты (см. далее) показывают, что на линейной стадии неустойчивость развивается по отношению к осесимметричным возмущениям, поэтому ради простоты выкладок будем рассматривать этот случай. Уравнения для возмущений и соответствующих граничных условий в терминах функции тока $V_z = r^{-1}\partial(r\psi)/\partial r$, $V_r = -\partial \psi/\partial z$ после преобразований записываются в виде

$$\Omega_{1}(r > R): \Delta \Phi_{1} = 0; \quad \Delta = \partial^{2}/\partial r^{2} + r^{-1}\partial/\partial r + \partial^{2}/\partial z^{2}; \quad (8)$$

$$\Omega_{2}(r < R): \Delta \Phi_{2} = 0;$$

$$\hat{L} \Big(\eta \hat{L} \psi - \rho \partial \psi / \partial t \Big) = 0, \quad \hat{L} = \Delta - r^{-2};$$

$$S(r = R): \quad \partial f / \partial t = -\psi_{r}, \quad \Phi_{2} = \Phi_{1} - E_{0}f,$$

$$\varepsilon_{0}(\varepsilon \Phi_{2r} - \Phi_{1r}) = q_{s}, \quad (9)$$

$$\partial n_{si} / \partial t + (-1)^i b_{si} n_{si}^0 \Phi_{2zz} + n_{si}^0 \psi_{rz} - (-1)^i b_i n_0 \Phi_{2r} = 0,$$

(*i* = 1,2),

$$p + 2\eta \Psi_{rz} - \varepsilon_0 E_0 \Phi_{2r} = -\alpha (f_{zz} + f / R^2),$$

$$\eta (2\Psi_{zz} - \hat{L}\Psi) = -q_{s0} \Phi_{2z}$$

при условии ограниченности искомых функций при r = 0. Здесь нижние буквенные индексы z, r обозначают частные производные.

Ради простоты рассмотрим случай осесимметричных возмущений. Решение разыскиваем в виде нормальных мод:

$$\Psi(z) = (C_1 \Psi_1(z) + C_2 \Psi_2(z))F,$$

$$\Psi_1(z) = I_1(kr)/I_1(\kappa), \ \Psi_2(z) = I_1(\beta r)/I_1(\kappa_i), \quad (10)$$

$$\Phi_1 = H_{10}(K_0(kr)/K_0(\kappa))F, \quad \Phi_2 = H_{20}(I_0(kr)/I_0(\kappa))F,$$
$$p = P(r)F, f = f_0F, \quad n_{sj} = N_{j0}F \quad (j = 1, 2),$$
$$F = \exp[i(\omega t - kz)],$$

где $\beta = \sqrt{k^2 + i\rho\omega/\eta}$, $\kappa_i = R\beta$, $\kappa = Rk$, C_j , H_{j0} , f_0 , $N_{j0} = \text{const} (j = 1, 2)$, I_0 , I_1 , K_0 и далее K_1 – модифицированные функции Бесселя [8].

Подставляя эти выражения в граничные условия (9), получаем следующее дисперсионное соотношение, определяющее комплексные частоты малых колебаний:

$$\left(ik 2\eta \Psi_1' - \omega \rho \frac{I_0(\kappa)}{I_1(\kappa)} \right) A_1 - ik 2\eta \Psi_2' A_2 =$$

$$= \alpha \left(k^2 - \frac{1}{R^2} \right) - k \varepsilon_0 E_0^2 \left(B_\kappa + \frac{K_1(\kappa)}{K_0(\kappa)} G \right),$$

$$(11)$$

$$A_{1} = (a_{3} + a_{2}\omega/k)/a, A_{2} = (a_{3} + a_{1}\omega/k)/a, a = a_{1} - a_{2},$$
(12)

$$a_{1} = \left(V_{E}^{2}/V_{f}^{2}\right)\Psi_{1}^{\prime}/k, \quad a_{2} = 1 + \left(V_{E}^{2}/V_{f}^{2}\right)\Psi_{2}^{\prime}/k,$$
$$a_{3} = -BV_{E}^{2}/(V_{f}H) - i2k\eta/\rho,$$
$$V_{E}^{2} = \frac{\varepsilon_{0}E_{0}^{2}}{\rho}, \quad V_{f} = \frac{\omega}{k}, \quad \Omega_{e} = \frac{\omega_{e}I_{1}(\kappa)}{A_{x}I_{0}(\kappa)},$$

$$\begin{split} \omega_e &= \frac{1}{\varepsilon_0} \left(k \sigma_{s0} + \sigma_0 \frac{I_1(\kappa)}{I_0(\kappa)} \right), \\ \sigma_{s0} &= e(b_{s1} n_{s1}^0 + b_{s2} n_{s2}^0), \\ \sigma_0 &= e(b_1 + b_2) n_0, \\ H &= 1 - i \frac{\Omega_e}{\omega}, \quad B_\kappa = \frac{K_1(\kappa)}{K_0(\kappa)} - \frac{1}{\kappa}, \\ G &= \frac{1}{A_\kappa H} \left(\frac{A_2 \Psi_2' - A_1 \Psi_1'}{\omega} - 1 \right), \\ A_\kappa &= \varepsilon \frac{I_1(\kappa)}{I_0(\kappa)} + \frac{K_1(\kappa)}{K_0(\kappa)}, \quad \Psi_1' = \frac{k I_1'(\kappa)}{I_1(\kappa)} \\ \Psi_2' &= \frac{\beta I_1'(\kappa_i)}{I_1(\kappa_i)}. \end{split}$$

Здесь I'_1 обозначает производную по соответствующему аргументу.

Рассмотрим предельные случаи.

1. В длинноволновом приближении или малой вязкости $k^2 \ll \omega \rho / \eta$ из (11) для общего случая не осесимметричных возмущений получаем известное выражение для частот малых колебаний [9]:

$$\omega^{2} = \omega_{0}^{2} \frac{\kappa I_{n}'(\kappa)}{I_{n}(\kappa)} \left[\kappa^{2} + n^{2} - 1 + W \left(1 + \frac{\kappa K_{n}'(\kappa)}{K_{n}(\kappa)} \right) \right], \quad (13)$$
$$\omega_{0} = \sqrt{\alpha / (\rho R^{3})}, \quad \kappa = kR,$$
$$W = \varepsilon_{1} \varepsilon_{0} E_{0}^{2} R / \alpha. \quad (14)$$

Следовательно, в этом приближении поведение заряженной струи определяется моделью идеальной жидкости с мгновенной релаксацией зарядов.

Рассмотрим предельные случаи. Используя формулы дифференцирования и асимптотические выражения [8] из (13) получаем следующие асимптотики:

$$\kappa \ll 1: \ \omega^2 = 0.5 \ \omega_0^2 \\ \kappa^2 (W-1), \ n = 0;$$

$$\omega^2 = \omega_0^2 n(n-1)(n+1-W), \ n = 2, \ 3, \dots$$
(15)

$$\kappa \gg 1: \ \omega^2 = \omega_0^2 \kappa (n^2 + \kappa^2 - \kappa W). \tag{16}$$

Отсюда видно, что в области длинноволновых мод ($\kappa <<1$) осесимметричные возмущения (n = 0) всегда подавляются полем, тогда как неосесимметричные возмущения (n = 2, 3,...) подавляются полем при W < 3, и поле дестабилизирует струю при W > 3 по отношению к возмущению с n = 2. В области коротковолновых возмущений ($\kappa >>1$) электрическое поле подавляет возмущения при $W < \kappa$ и дестабилизирует при $W > \kappa$ по отношению к осесимметричным возмущениям n = 0.

Численное исследование дисперсионного уравнения (13) для осесимметричного случая показало, что область неустойчивости по волновым числам заключена в пределах $\kappa_{*1} < \kappa < \kappa_{*2}$. Зависимость граничных значений κ_{*1} , κ_{*2} от параметра W представлена на рис. 2a. Расчеты показали, что в слабых и сильных полях имеют место асимптотики: W << 1: $\kappa_{*1} \rightarrow 0$, $\kappa_{*2} \rightarrow 1$; W >> 1: $\kappa_{*1} \rightarrow 0,56$, $\kappa_{*2} \rightarrow W$. Критическое волновое число k_m (и соответствующая длина волны $\lambda_m = 2\pi/k_m$) вычислялось из условия максимального значения декремента нарастания возмущений в области неустойчивости:

Рис. 2. К неустойчивости заряженных струй: зависимости граничных значений параметров $\kappa = kR$ (а) и κ_m (б) от W.

Зависимость κ_m от W представлена на рис. 2,6. Расчеты показывают, что при $W \to 1$: $\kappa_m \to 0,7$, при W >> 1: $\kappa_m \to 0,53W$, причем последняя асимптотика с точностью не менее 3% начинает выполняться при $W \ge 10$. Зависимость критической длины волны λ_m от диаметра струи D и параметра поля W определяется как $\lambda_m = \pi D/\kappa_m$. Из полученных численных данных следует, что в области слабых полей критическое возмущение определяется длиной волны Релея $\lambda_m = 4,5D$, а с ростом поля λ_m уменьшается. Выявленные закономерности подтверждаются экспериментальными наблюдениями по истечении заряженных струй из малого капилляра (см. 3).

2. В коротковолновом приближении $k^2 >> \omega_0 \rho / \eta$ из (11) получаем

$$\omega = i \frac{\delta_0}{2\kappa D_{\kappa}} \left(F_W + \kappa W S_{\kappa} \frac{\omega}{\omega - i\Omega_e} \right),$$

$$F_W = \kappa^2 - 1 - \kappa W B_{\kappa}, \qquad (17)$$

$$\delta_0 = \alpha/(R\eta), \quad D_{\kappa} = I_0/I_1 + L_{\kappa}P_{\kappa}, \quad L_{\kappa} = I_0/I_1 - 1/\kappa,$$

$$P_{\kappa} = 1 - \kappa \Psi_{21},$$

$$\Psi_{21} = (1 + 1/\kappa^2)/L_{\kappa} - L_{\kappa},$$

$$Q_{\kappa} = B_{\kappa} - L_{\kappa}P_{\kappa},$$

$$S_{\kappa} = S_1/A_{\kappa},$$

$$S_1 = P_{\kappa}(K_1L_{\kappa}/K_0 + I_0Q_{\kappa}/I_1) + Q_{\kappa}\Psi_{21} - K_1B_{\kappa}/K_0.$$

Здесь функции Бесселя зависят от параметра к. Исследование уравнения (17) выявляет следующие закономерности. Колебательные возмущения имеют место при $\kappa^2 > 1 + WB_{\kappa}$ ($F_W > 0$), а неустойчивость – при $\kappa^2 < 1 + WB_{\kappa}$ ($F_W < 0$) и развивается монотонным образом. Причем в области неустойчивости существуют две ветви, декременты которых определяются согласно

$$\delta_{1} = (b/2) \left(1 + \sqrt{1 + 4|c|/b^{2}} \right),$$

$$\delta_{2} = (b/2) \left(1 - \sqrt{1 + 4|c|/b^{2}} \right),$$
 (18)

$$b = \Omega_{e} + F + B, c = F\Omega_{e},$$

$$F = \delta_{0} F_{W} / (2\kappa D_{\kappa}), B = \delta_{0} W S_{\kappa} / (2D_{\kappa}).$$

Используя выражение (18), можно вычислить граничное значение к*, отделяющее область неустойчивости по длинам волн к < к* от области устойчивости к > к*, а также значения к_m, при которых декременты возмущений принимают максимальные значения в области неустойчивости. Результаты расчетов для случаев малой ($\omega_e << \delta_0$) и больших ($\omega_e >> \delta_0$) проводимостей при различных значениях W, є представлены в таблице.

Приведенные числовые данные показывают, что как для неполярных жидкостей ($\varepsilon = 2,1$, как у трансформаторного масла, жидких углеводородов и т.д.), так и в случае водных растворов ($\varepsilon = 81$) критическая длина волны $\lambda_* = 2\pi R/\kappa_*$, от-

$W(\varepsilon)$	К*	κ×	κ_m	max δ/δ_0	κ_m	max δ/δ_0
	$\omega_e \ll \delta_0$	$\omega_e >> \delta_0$	$\omega_e \ll \delta_0$	$\omega_e \ll \delta_0$	$\omega_e >> \delta_0$	$\omega_e >> \delta_0$
1 (2,1)	1,32	1,33	0,91	0,066	0,545	0,108
5(2,1)	3,23	4,65	1,61	0,539	2,24	0,677
10(2,1)	6,18	9,56	2,14	1,45	3,38	2,27
25(2,1)	16,18	24,53	3,52	4,90	5,05	8,26
50(2,1)	33,08	49,51	5,35	11,65	6,68	19,18
1(81)	1,33	1,33	0,65	0,099	0,545	0,108
5(81)	4,58	4,65	2,20	0,6657	2,24	0,677
10(81)	9,44	9,56	3,35	2,27	3,38	2,27
25(81)	24,2	24,53	5,03	8,11	5,05	8,26
50(81)	48,89	49,51	6,65	18,88	6,68	19,18

Критические значения параметров неустойчивости заряженных струй вязких жидкостей (область коротковолнового спектра)

деляющая область неустойчивости ($\lambda > \lambda_*$) от области устойчивости ($\lambda < \lambda_*$), уменьшается с ростом поля (параметра *W*), причем при фиксированном *W* с ростом є критическая длина λ_* также уменьшается. Такая же закономерность наблюдается и для наиболее опасной длины волны ($\lambda_m = 2\pi R/\kappa_m$), при которой быстрее всего нарастают возмущения. Причем в случае жидкостей с высокой релаксацией зарядов ($\omega_e >> \delta_0$) значения λ_* , λ_m не зависят от є.

3. СРАВНЕНИЕ ТЕОРИИ С ЭКСПЕРИМЕНТОМ

Закономерности истечения заряженных жидкостей определяются следующими факторами: 1) скоростью истечения; 2) физическими характеристиками жидкостей (проводимостью, вязкостью, поверхностным натяжением, диэлектрической проницаемостью); 3) величиной напряженности поля; 4) ионизационными процессами на поверхности раздела жидкость-газ. Поэтому для полного описания закономерностей истечения заряженных струй необходимо дополнить систему уравнений (1)–(7) кинетическими уравнениями, определяющими ионизационные процессы в газе и на свободной поверхности жидкости (что определит источники $\dot{\xi}_{si}$ в уравнении (7)). На данном этапе исследований можно провести сравнение теоретических расчетов истечений струй с быстрой релаксаций зарядов (данные рис. 2 и таблицы) с экспериментальными данными по истечении жидкостей с быстрой релаксацией зарядов при условии отсутствия ударных ионизационных процессов на свободной поверхности. Как было показано, в закритической области $E > E_*$ имеет место дестабилизация струи, причем критические длины волн ($\lambda_m = \pi D/\kappa_m$) уменьшаются с ростом поля (рис. 3).

В качестве примера рассмотрим изменение критической длины волны λ_m в зависимости от прикладываемого напряжения при быстрой релаксации заряда (рис. 4). В случае водных струй при радиусе R = 0,5 мм и U = 10 кВ критическая длина волны $\lambda_m \sim 4$ мм (рис. 3а), тогда как при U = 14 кВ имеем $\lambda_m \sim 2$ мм (рис. 3в). Если считать, что параметр W >> 1, то, используя асимптотику $\kappa_m \sim 0,53W$ с учетом $W \sim U^2$, получаем, что при указанных напряжениях критическая длина волны уменьшается в ~ 2 раза. Таким образом, имеется полное согласование теории с экспериментом.

ЛИТЕРАТУРА

- 1. Мелчер Дж. Электрогидродинамика. *Магнитная* гидродинамика. 1974, (2), 3–30.
- 2. Верещагин И. П., Левитов В.И., Мирзабекян Г.З., Пашин М.М. *Основы электрогазодинамики дис*персных систем. М.: Энергия, 1974. 480 с.

- 3. Electrohydrodynamics. *CISM courses and lectures* N 380. Undine, Italy, 1998. 363 p.
- Бабский В.Г., Копачевский Н.Д., Мышкис А.Д. и др. Гидромеханика невесомости. М.: Физматгиз, 1976. 504 с.
- 5. Адамсон А. Физическая химия поверхностей. М.: Мир, 1979. 568 с.
- Волькенштейн Ф.Ф. Электронные процессы на поверхности полупроводников при хемосорбции. М.: Наука, 1987. 432 с.
- Жакин А.И. О нелинейных равновесных формах и нелинейных волнах на поверхности феррожидкости (идеального проводника) в поперечном магнитном (электрическом) поле. Магнитная гидродинамика. 1983, (4), 41–48.

- 8. Никифоров А.Ф., Уваров В.Б. Специальные функции. М.: Наука, 1984. 304 с.
- 9. Taylor G.J. Electrically Driven Jets. *Proc. Roy. Soc.* London. 1969, **A313**, 453–475.

Поступила 04.05.12

Summary

Theoretical calculations of instability criteria and critical wave length of charged jets at fast charge relaxations are presented. An acceptable conformity of theory with experiments is demonstrated.

Keywords: electric field, electric current, electrode, liquid, jet, charge, surface tension, viscosity.