ЭЛЕКТРИЧЕСКАЯ ОБРАБОТКА БИОЛОГИЧЕСКИХ ОБЪЕКТОВ И ПИЩЕВЫХ ПРОДУКТОВ

СВОЙСТВА КРАХМАЛЬНОЙ ШЛИХТЫ, ОБРАБОТАННОЙ В РЕЖИМЕ ЭЛЕКТРОРАЗРЯДНОЙ НЕЛИНЕЙНОЙ ОБЪЕМНОЙ КАВИТАЦИИ

А.П. Малюшевская

Институт импульсных процессов и технологий НАН Украины, пр. Октябрьский, 43-А, г. Николаев, 54018, Украина, <u>iipt@iipt.com.ua</u>

Введение

Производство текстильных изделий в настоящее время представляет собой сложный многостадийный процесс. Обязательной его стадией для хлопчатобумажной и льняной подотраслей является шлихтование. Сущность процесса шлихтования заключается в пропускании нитей основы через клеящий состав (шлихту), создающий после высушивания на нити гладкую, эластичную плёнку, которая предохраняет нить от разрыва при ткачестве. Шлихта состоит из клеящих и текстильновспомогательных веществ (расщепители, смачиватели, пластификаторы, антистатики, антисептики). Основной объём в рецептуре шлихты приходится на класс клеящих веществ. К клеящим веществам относятся нативные или модифицированные крахмалы [1]. Качество шлихты из нативного крахмала в большой степени зависит от способа приготовления. Известен метод увеличения количества деструктированного крахмала с помощью ультразвуковой кавитации [2]. Цель данной работы – исследование результатов воздействия более мощной – электроразрядной (ЭР) – кавитации на процесс приготовления крахмальной шлихты – природного полимера, как рекомендовалось в [3].

Экспериментальные условия

Эксперимент проводился с использованием генератора импульсных токов, который обеспечивал электрические разряды в суспензии крахмала в воде, возбуждавшие электроразрядную кавитацию [4, 5].

Главные технологические параметры при обработке шлихты ЭР способом: интенсивность ЭР кавитации [4], предварительно определяемая йодометрическим методом, переводилась в относительные единицы — от 1 до 5 (при этом одна единица соответствовала выделившимся 5 мг/л йода, то есть 5 единиц — это 25 мг/л выделившегося йода); температура шлихты; средняя скорость расщепления; время обработки шлихты.

Готовилась крахмальная шлихта с концентрацией C=4–6%; температура окончания процесса приготовления шлихты T, °C: 70, 75, 80, 85; причем догрев происходил за счет предпробойных токов разряда. Полученная после обработки шлихта характеризовалась: концентрацией C, %; вязкостью n, c.

Метод приготовления шлихты ЭР способом представлял собой нагрев воды до 40–45°С, загрузку крахмала и деструкцию его зерен с гомогенизацией полученной дисперсии ЭР кавитацией до достижения заданной температуры и относительно постоянной вязкости. Вязкость определяли временем истечения в капельном режиме 20 см³ пробы (отбираемой из технологического реактора сразу после окончания процесса обработки) шлихты через отверстие диаметром 0,75 мм, а средняя скорость расщепления – расчетом в процентном отношении крахмала, растворенного в дистиллированной воде.

Результаты и обсуждение

Исследовалось изменение постоянной средней вязкости, средней скорости деструкции шлихты при варьировании временем и интенсивностью ЭР обработки для различных концентраций и температур шлихты. В качестве контрольных замеров вязкости по принятой методике была определена вязкость отстоянной водопроводной воды η_{B} (при температуре 20°C η_{B} = 65 c).

Экспериментальные результаты обработки шлихты приведены в таблицах.

Анализ таблиц позволяет сделать некоторые технологические выводы о влиянии параметров электроразрядного диспергирования крахмала на свойства и характеристики шлихты. Достигнутая постоянная вязкость шлихты меняется в зависимости от концентрации, температуры и интенсивности ЭР кавитации.

© Малюшевская А.П., Электронная обработка материалов, 2011, 47(6), 84–86.

Данные табл. 1 позволяют говорить об увеличении постоянной вязкости шлихты, обработанной ЭР, с повышением температуры. Например, при увеличении температуры от 70 до 85° С вязкость повышается (для C=6%) от 103 до 127 с при обработке с интенсивностью 1 и от 141 до 146 с — при обработке с интенсивностью 5. При этом темп прироста вязкости уменьшается при увеличении интенсивности электроразрядной кавитации.

Таблица 1. Вязкость шлихты в зависимости от интенсивности ЭР кавитации для различных кон-

центраций и температур

Интен-	Время истечения 20 см 3 шлихты t , с												
сив-		C =	4%		<i>C</i> = 5%				<i>C</i> = 6%				
ность		Τ,	°C			Τ,	°C		T, °C				
кавита-	70	75	80	85	70	75	80	85	70	75	80	85	
ции													
1	100	109	118	125	102	110	121	126	103	110	120	127	
2	111	114	121	128	112	116	122	130	112	117	124	131	
3	120	123	127	133	121	125	128	135	122	126	130	135	
4	129	132	135	138	130	134	135	139	131	134	136	140	
5	138	139	140	144	139	141	142	145	141	143	144	146	

Tаблица 2. Bремя P обработки t_p до получения вязкости постоянного значения в зависимости от

интенсивности ЭР кавитации для различных концентраций и температур

иниенсионости от каоинации озы разли том концентрации и температур													
Интен-	Время обработки $t_{ m p}$, с												
сив-		C =	4%		<i>C</i> = 5%				<i>C</i> = 6%				
ность	T, °C				<i>T</i> , °C				T, °C				
кавита-													
ции	70	75	80	85	70	75	80	85	70	75	80	85	
1	200	230	250	280	230	260	280	330	260	290	330	400	
2	170	200	210	225	210	240	260	300	200	210	250	330	
3	150	160	180	195	190	210	240	280	180	200	220	300	
4	130	145	160	170	170	190	210	230	170	190	210	290	
5	110	135	160	165	150	170	180	200	160	180	200	250	

Tаблица 3. Средняя скорость расщепления крахмала V_p в зависимости от индекса $\Im P$ кавитации для

различных кониентраций и температур

pustiti titoti	измичных концентриции и темперитур											
Интен-	Скорость расщепления крахмала V_p , %/c											
сив-	C = 4%				C = 5%				<i>C</i> = 6%			
ность	Температура T , °C				Температура T , °C				Температура T , °С			
кавита-	70	75	80	85	70	75	80	85	70	75	80	85
ции												
1	0,020	0,017	0,016	0,014	0,022	0,019	0,018	0,015	0,023	0,021	0,018	0,015
2	0,024	0,020	0,019	0,018	0,024	0,021	0,019	0,017	0,030	0,029	0,024	0,018
3	0,027	0,025	0,022	0,021	0,026	0,024	0,021	0,018	0,033	0,030	0,027	0,020
4	0,031	0,028	0,025	0,024	0,029	0,026	0,024	0,022	0,035	0,032	0,029	0,021
5	0,036	0,030	0,025	0,024	0,033	0,029	0,028	0,025	0,038	0,033	0,030	0,024

В то же время значение вязкости возрастает с повышением концентрации шлихты для всех температур и интенсивностей ЭР воздействия. Например, при повышении концентрации шлихты с 4 до 6% достижимая вязкость увеличивается от 144 до 146 с (температура – 85°С, интенсивность ЭР кавитации – 5). При этом увеличение интенсивности ЭР кавитации позволяет достичь увеличения вязкости. Так, при возрастании интенсивности ЭР обработки с 1 до 5 вязкость увеличивается от 118 до 140 с при температуре 80°С и концентрации 4%.

Следует обратить внимание на то, что время обработки крахмальной шлихты для заданной вязкости лежит в диапазоне от 3 до 7 минут. Это позволяет делать предварительные выводы о возможности значительного энерго- и ресурсосбережения, характерного для данного технологического процесса с использованием ЭР кавитации. Так, данные табл. 2 свидетельствуют о том, что для достижения заданной вязкости крахмальной шлихтой, концентрация которой 5%, при температуре 70° С время ЭР воздействия на раствор – 200 с при интенсивности ЭР кавитации 1.

Скорость деструкции крахмала (табл. 3) изменяется следующим образом: растет с возрастанием интенсивности ЭР обработки; уменьшается с ростом концентрации крахмала в дисперсной крахмальной смеси независимо от температуры и интенсивности ЭР обработки; падает с ростом температуры при всех концентрациях крахмала.

Заключение

Исследования целесообразности ЭР обработки крахмальной шлихты дают возможность сделать вывод, что ЭР воздействие на крахмальный раствор является эффективным. Так, минимизация времени обработки крахмального раствора повышает скорость диспергирования крахмала в несколько раз. Ценным является то, что ЭР обработка крахмального раствора позволяет получить качественную шлихту при 70–85°С, что в перспективе при развитии этого метода обработки крахмальной шлихты даст возможность значительной экономии теплоносителей на предприятиях текстильной промышленности.

ЛИТЕРАТУРА

- 1. Андреева Н.В. Текстильное производство. М., 1988. 256 с.
- 2. Думитраш П.Г., Савней П.А., Болога М.К., Гимза А.В. Влияние ультразвуковой кавитации на свойства крахмальной шлихты. Электронная обработка материалов. 2005, **41**(1), 85–91.
- 3. Малюшевский П.П., Ющишина А.Н. Электрический взрыв в химико-технологических процессах. Часть 1. Электронная обработка материалов. 2001, **37**(4), 58–72.
- 4. Ющишина А.Н., Малюшевский П.П., Смалько А.А., Петриченко Л.А., Тихоненко С.М. Йодометрическое определение электроразрядной объёмной кавитации. Электронная обработка материалов. 2002, **38**(2), 76–79.
- 5. Смалько А.А., Малюшевская А.П., Тихоненко С.М. О факторах, влияющих на электроразрядную кавитацию. Электронная обработка материалов. 2003, **39**(4), 41–46.

Поступила 25.02.11

Summary

The electro-discharge cavitation's influence on the starch suspension in water for the starch size for textile industry receiving are considered. Main features of electro-discharge treatment of starch size were studied. The advantages of the electrodischarge method of preparation compared to the traditional methods.