ЭЛЕКТРИЧЕСКИЕ ПРОЦЕССЫ В ТЕХНИКЕ И ХИМИИ

А.И. Григорьев, С.О. Ширяева, Н.А. Петрушов, М.В. Волкова

НЕУСТОЙЧИВОСТЬ БОКОВОЙ ПОВЕРХНОСТИ СИЛЬНО ЗАРЯЖЕННОЙ СТРУИ В КОЛЛИНЕАРНОМ ПОТОКЕ МАТЕРИАЛЬНОЙ СРЕДЫ

Ярославский государственный университет им. П.Г. Демидова, ул. Советская, 14, г. Ярославль, 150000, Россия, <u>grig@uniyar.ac.ru</u>

Введение. Феномен электродиспергирования жидкости широко используется в технике и технологии, а также достаточно детально изучен и экспериментально и теоретически (см., например, обзоры [1–7] и приведенную там литературу). Тем не менее некоторые вопросы, связанные с обсуждаемым феноменом, остались за рамками проведенных исследований. В частности, сказанное относится к особенностям электростатического распада на отдельные капли весьма сильно заряженных струй, тем более при учете взаимодействия капиллярных волн на поверхности движущейся струи с неподвижной внешней средой. Согласно [8–9] наличие относительного движения струи и внешней для неё среды приводит к дестабилизации струи в смысле реализации капиллярного аэродинамического распада, который имеет место при достаточно больших скоростях [7]. Однако влияние движения сильно заряженной струи относительно среды на ее распад (на электростатическую неустойчивость её боковой поверхности) не исследовано. Само явление электростатической неустойчивости боковой поверхности наблюдалось экспериментально [10–11], а в [12–13] развита его теоретическая модель. В этой связи представляется актуальным исследовать особенности реализации электростатической неустойчивости заряженной струи, движущейся относительно материальной диэлектрической среды. Этой проблеме и посвящено настоящее рассмотрение.

1. Математическая формулировка задачи. Рассмотрим задачу об исследовании устойчивости капиллярных волн на однородно заряженной (с поверхностной плотностью заряда χ) цилиндрической поверхности (радиуса R) струи идеально проводящей несжимаемой идеальной жидкости с плотностью ρ_2 и коэффициентом межфазного натяжения σ . Пусть струя движется со скоростью $U_0 \| e_z$ (e_z – орт продольной координаты) в идеальной несжимаемой диэлектрической среде, имеющей плотность ρ_1 и диэлектрическую проницаемость, равную единице. Задачу будем решать в инерциальной системе отсчета, связанной с осью симметрии струи и движущейся со струёй со скоростью U_0 , в цилиндрических координатах, орт e_z которых совпадает по направлению с U_0 и с осью симметрии невозмущенной капиллярным волновым движением цилиндрической поверхности струи. Все рассмотрение проведем в безразмерных переменных, в которых $R = \rho_2 = \sigma = 1$, а поверхность раздела сред, возмущенная капиллярным волновым движением, описывается соотношением

$$F(r, z, \varphi, t) = r - 1 - \xi(z, \varphi, t) = 0, \qquad |\xi| \ll 1,$$

где ξ(*z*, φ, *t*) – малое возмущение цилиндрической поверхности струи, φ – азимутальный угол.

Полная математическая формулировка задачи имеет вид

$$div u_1 = 0; \quad div u_2 = 0; \qquad \Delta \Phi = 0;$$

$$\partial_t u_1 + (u_1 \nabla) u_1 = -\frac{1}{\rho} \nabla p_1; \qquad \partial_t u_2 + (u_2 \nabla) u_2 = -\nabla p_2;$$

$$r \to 0: \quad u_2 \to 0;$$

$$r \to \infty: \quad u_1 \to -U_0; \quad \nabla \Phi \to 0;$$

[©] Григорьев А.И., Ширяева С.О., Петрушов Н.А., Волкова М.В., Электронная обработка материалов, 2010, № 3, С. 22–27.

 $r = 1 + \xi$: $\frac{dF}{dt} = 0$; $n \cdot u_1 = u \cdot u_2 = u_n$; $p_2 - p_1 + p_E - p_{\sigma} = 0$; $\Phi(r,t) = \Phi_s(t)$; где $u_j \equiv u_j(r,t)$ – поля скоростей течения жидкости в среде (j = 1) и в струе (j = 2); $p_j \equiv p_j(r,t)$ – гидродинамические давления в среде (j = 1) и струе (j = 2); p_E и p_{σ} – давление электрических сил и давление сил поверхностного натяжения на границе раздела сред соответственно; $\Phi \equiv \Phi(r,t)$ – потенциал электростатического поля; $\Phi_s(t)$ – потенциал поверхности струи; n – орт нормали к поверхности струи; ρ – безразмерная плотность среды.

В качестве дополнительных условий примем: условие постоянства объёма струи, приходящегося на одну длину волны λ (при одноволновой деформации границы раздела сред):

$$\int_{V} dV = \pi \lambda; \quad V = \left\{ 0 \le r \le 1 + \xi(z, \varphi, t); \quad 0 \le \varphi \le 2\pi; \quad z_0 \le z \le z_0 + \lambda \right\}$$

и условие сохранения заряда на отрезке струи длиной λ:

$$\int_{S} \frac{1}{4\pi} n \cdot \nabla \Phi dS = 2\pi \chi \lambda; \qquad S = \left\{ r = 1 + \xi(z, \varphi, t); \ 0 \le \varphi \le 2\pi; \ z_0 \le z \le z_0 + \lambda \right\}.$$

2. Дисперсионное уравнение. Сформулированную задачу естественно решать по аналогии с тем, как это делалось, например, в [5, 12–13]. Искомые выражения для возмущения поверхности струи $\xi(\varphi, z, t)$, гидродинамических потенциалов течений в среде $\psi_1(\vec{r}, t)$ и капле $\psi_2(\vec{r}, t)$, а также для электростатического потенциала $\Phi(\vec{r}, t)$ можно записать в виде [5]:

$$\xi(\varphi, z, t) = a \cdot \exp(ist) \cdot \exp(ikz + im\varphi);$$

$$\psi_1(\vec{r}, t) = b \cdot \exp(ist) \cdot \exp(ikz + im\varphi) \cdot K_m(kr);$$

$$\psi_2(\vec{r}, t) = c \cdot \exp(ist) \cdot \exp(ikz + im\varphi) \cdot I_m(kr);$$

$$\Phi(\vec{r}, t) = d \cdot \exp(ist) \cdot \exp(ikz + im\varphi) \cdot K_m(kr),$$

где $I_m(kr)$ и $K_m(kr)$ – модифицированные функции Бесселя первого и второго рода порядка m [14], m – азимутальный параметр; S – частота капиллярных волн, в общем случае комплексная; a, b, c, d – неизвестные коэффициенты. Подставляя выписанные проекты решений в систему граничных условий задачи, можно получить дисперсионное уравнение для волн с азимутальным числом m = 2 в виде

$$s^{2} - \frac{2\delta}{\beta}s - \frac{\kappa}{\beta} = 0,$$

$$\beta(k) \equiv \rho h^{-1} - g^{-1} = \frac{\rho g - h}{gh}; \ \delta(k, U_{0}) \equiv k\rho U_{0}h^{-1};$$

$$\kappa(k, \chi, U_{0}) \equiv \left\{ \begin{bmatrix} -3 - k^{2} - w(1+h) \end{bmatrix} - We \cdot k^{2}h^{-1} \right\};$$

$$h(k) \equiv \frac{k K_{2}'(k)}{K_{2}(k)} = 2 - \frac{k K_{3}(k)}{K_{2}(k)}; \qquad g(k) \equiv \frac{k I_{2}'(k)}{I_{2}(k)} = 2 + \frac{k I_{3}(k)}{I_{2}(k)};$$

$$w \equiv 4\pi\chi^{2}; \quad We \equiv \rho U_{0}^{2}.$$

Решения дисперсионного уравнения имеют вид

$$s_{1,2} = \frac{\delta}{\beta} \pm \sqrt{\left(\frac{\delta}{\beta}\right)^2 + \frac{\kappa}{\beta}};$$

или

$$s_{1,2} = \frac{g}{\left(\rho g - h\right)} k \rho U_0 \pm$$

$$\pm \sqrt{\left[\frac{gk\rho U_0}{(\rho g - h)}\right]^2 + \frac{\left[\left(-3 - k^2 - w(1+h)\right)hg - We \cdot k^2g\right]}{(\rho g - h)}}.$$
(1)

3. Обсуждение полученных результатов. При изменении физических параметров системы волны на поверхности раздела сред будут сохранять устойчивость, пока частоты $S_{1,2}$ остаются вещественными, то есть пока подкоренное выражение в (1) положительно. Когда подкоренное выражение станет отрицательным, у частот $S_{1,2}$ появится мнимая часть, и они образуют пару комплексно сопряженных корней. При этом амплитуда волны с отрицательной мнимой частью частоты, $\sim \exp\left[i\left(\operatorname{Re} s - i\left|\operatorname{Im} s\right|\right)t\right] \sim \exp\left[|\operatorname{Im} s| \cdot t\right] \cdot \exp\left[i\operatorname{Re} s \cdot t\right]$, начнет экспоненциально со временем увеличивать свою амплитуду с инкрементом: $\gamma \equiv |\operatorname{Im} s|$, что приведет к распаду струи на отдельные капли. Амплитуда волны с положительной мнимой частью частоты будет экспоненциально во времени затухать.

Отметим, что коэффициент g всегда положителен, причем g > 2, а коэффициент h отрицателен и всегда h < -2. Отметим также, что для жидкой струи в газообразной среде ($\rho \sim 0,001$) при любых разумных скоростях ($U_0 \le 1000$ см/с [15]) для волн с волновыми числами, представляющими интерес в плане электростатического дробления струи ($k \sim 1$), второе слагаемое под радикалом в (1), как правило, отрицательно и фактически определяет величину инкремента неустойчивости.

Приравнивая в (1) подкоренное выражение нулю, получим критическое условие перехода от устойчивых волн к неустойчивым:

$$\rho k^{2} W e + \left[\left(-3 - k^{2} - w \left(1 + h \right) \right) \frac{h}{g} - k^{2} W e \cdot \frac{1}{g} \right] (\rho g - h) = 0.$$
⁽²⁾

Из (2) легко найти критическое для начала реализации неустойчивости значение параметра We:

$$We = \frac{\left[3 + k^2 + w(1+h)\right](\rho g - h)}{k^2}.$$
(3)

Для незаряженной струи при

$$We \ge \frac{\left(3+k^2\right)\left(\rho g-h\right)}{k^2}$$

будет реализоваться аэродинамическая неустойчивость боковой поверхности струи [7]. Из (3) несложно видеть, что с увеличением χ – поверхностной плотности электрического заряда на границе раздела сред (параметра W) – критическая для начала распада струи величина скорости стационарного движения U_0 (параметра We) снижается, и при

$$w = -\frac{(3+k^2)}{(h+1)} \equiv \frac{(3+k^2)}{(|h|-1)}$$
(4)

обращается в ноль. Значение параметра w, определяемое соотношением (4), является критическим для реализации электростатической неустойчивости боковой поверхности струи в отсутствие потока материальной среды (в вакууме). Соответствующая зависимость w(k) приведена на рис. 1 и находится в полном согласии с результатами ранее проведенных исследований [5, 12–13]. При наличии коллинеарного струе потока внешней среды критическое значение параметра w определится соотношением

$$w = \frac{\frac{k^2 We}{\rho g - h} - (3 + k^2)}{(h+1)} = \frac{(3 + k^2) - \frac{k^2 We}{\rho g + |h|}}{(|h| - 1)}.$$
(5)

На рис. 2 приведены зависимости w = w(k), рассчитанные по (5) при фиксированных значениях параметра *We*. Из рисунка несложно видеть, что с увеличением параметра *We* минимальное значение зарядового параметра W, при котором реализуется смешанная электростатически-аэродинамическая неустойчивость боковой поверхности струи, снижается, а величина волнового числа соответствующей волны увеличивается. Указанное обстоятельство представляется важным, поскольку в отсутствие коллинеарного струе потока внешней материальной среды минимальное значение зарядового параметра для проводящей струи (согласно рис. 1) $w \approx 2,905$ и, по оценкам [5, 13], является весьма близким к предельному значению в смысле электрического пробоя воздуха. Здесь следует отметить, что согласно сказанному выше, значение параметра We, заметно превышающее единицу, в феномене электродиспергирования также не реально. Однако комбинация двух параметров ($w \approx 2$ и $We \approx 2$) позволяет согласовать результаты экспериментальных наблюдений как с результатами теоретического анализа, так и со здравым смыслом.

Рис. 1. Зависимость критического для начала реализации электростатической неустойчивости боковой поверхности струи в вакууме значения безразмерного зарядового параметра w от безразмерного волнового числа k

Рис. 2. Зависимости критического для начала реализации смешанной электростатическиаэродинамической неустойчивости боковой поверхности струи в вакууме значения параметра w от безразмерного волнового числа k, построенные при различных значениях параметра We

Из рис. 3,*a*, на котором приведены графики зависимости величины инкремента неустойчивости неосесимметричных волн с m = 2 на границе раздела сред от волнового числа k при w = 0 и нескольких фиксированных значениях параметров We, видно, что с увеличением параметра We ширина области волновых чисел, соответствующих неустойчивым волнам (область реализации аэродинамической неустойчивости боковой поверхности струи), расширяется, а величина волнового числа, соответствующего волне с максимальным инкрементом, смещается в область больших значений волновых чисел. Видно также, что в отсутствие на струе электрического заряда неустойчивость боковой поверхности струи реализуется только при значениях скорости, соответствующих весьма большим значениям параметра $We \ge 5,215$, что согласуется с экспериментальными данными [7, 16]. При отличном от нуля зарядовом параметре W (см. рис. 3, δ -e) критическое для реализации неустойчивости боковой поверхности струи значение скорости (параметра We) снижается, и при $w \approx 2$ значение параметра We достигает величин, наблюдаемых в экспериментах по электродиспергированию [15]: $We \le 2$ (см. рис. 3,e-e).

На рис. 4,*a*, приведены графики зависимости величины инкремента неустойчивости неосесимметричных волн с m = 2 на границе раздела сред от волнового числа k при We = 0 и нескольких фиксированных значениях параметра W. При We = 0 мы имеем дело с чисто электростатической неустойчивостью боковой поверхности струи, которая реализуется в полном согласии с [12–13] при $w \ge 2,905$ (см. рис. 1). По мере увеличения скорости относительного движения струи и материальной среды (по мере увеличения параметра We) критическое для начала реализации электростатической неустойчивости боковой поверхности струи значение параметра W снижается (см. рис. 4, δ -e). Из рис. 4,a-e видно, что при фиксированном параметре We с ростом параметра W волновое число волны с максимальным значением инкремента смещается в область больших значений волнового числа, а величина самого инкремента увеличивается.

На рис. 3,*a-г* и рис. 4,*a-г* бросается в глаза тот факт, что неустойчивость боковой поверхности струи носит пороговый характер как по величине заряда, приходящегося на единицу длины струи (параметра *W*), так и по скорости потока среды (параметра *We*). Так, при We = 0 электростатическая неустойчивость реализуется лишь при больших значениях заряда – при $W \ge 2,905$, а для незаряженной струи аэродинамическая неустойчивость ее боковой поверхности реализуется только при весьма больших скоростях – при $We \ge 5.215$.

Рис. 3. Зависимости от безразмерного волнового числа k величины безразмерного инкремента неустойчивости γ осенесимметричных волн c = 2, построенные при $\rho = 0,001$ для различных значений безразмерных параметров We и w. Chuзу вверх: a) We = 5,215; 5,3; 5,5; 5,7; w=0; б) We=3,77; 3,9; 4,2; 4,5; w=1; в) We = 2,15; 2,4; 2,65; 2,9; w = 2; г) We = 1,165; 1,25; 1,35; 1,45; w = 2,5

Рис. 4. Зависимости от безразмерного волнового числа k величины безразмерного инкремента неустойчивости γ осенесимметричных волн c m = 2, построенные при $\rho = 0,001$ для различных значений безразмерных параметров w и We. Снизу вверх: a) w = 2,905; 2,95; 3,05; 3,2; We=0; δ) w = 2,58; 2,75; 3; 3,25; We = 1; b) w = 2,08; 2,2; 2,4; 2,6; We = 2, c) w = 1,8; 1,95; 2,15; 2,4; We = 2,5

Заключение. Выведено дисперсионное уравнение для неосесимметричных капиллярных волн с азимутальным числом m = 2 на заряженной поверхности струи идеальной несжимаемой электропроводной жидкости, движущейся вдоль своей оси в идеальной несжимаемой диэлектрической среде. Показано, что влияние относительного движения струи и среды носит дестабилизирующий характер. Дисперсионное уравнение в двух предельных ситуациях – незаряженной струи в обдувающем ее потоке и заряженной струи в пренебрежении влиянием движения относительно среды – описывает соответственно аэродинамическую и электростатическую неустойчивости боковой поверхности струи. Неустойчивость неосесимметричных волн с азимутальным числом, равным двум, имеет пороговый характер как по скорости, так и по величине электрического заряда, приходящегося на единицу длины струи.

Работа выполнена в рамках тематического плана университета при поддержке грантов: Рособразования №2.1.1/3776, РФФИ № 09-01-00084 и № 09-08-00148.

ЛИТЕРАТУРА

1. *Бураев Т.К., Верещагин И.П., Пашин Н.М.* // Сильные электрические поля в технологических процессах. М.: Энергия. 1979. № 3. С. 87–105.

2. *Ентов В.М., Ярин А.Л.* // ВИНИТИ. Итоги науки и техники. Сер. "Механика жидкости и газа". 1984. Т. 17. С. 112–197.

3. Дудников В.Г., Шабалин А.Л. Электрогидродинамические источники ионных пучков (обзор) // Препринт 87-63 ИЯФ СО АН СССР. Новосибирск, 1987. 66 с.

4. *Fenn J.B., Mann M., Meng C.K. et al.* Electrospray ionization for mass spectrometry of large biomolecules (revue) // Science. 1989. V. 246. № 4926. P. 64–71.

5. Григорьев А.И. Неустойчивости заряженных капель в электрических полях (обзор) // Электронная обработка материалов. 1990. № 6. С. 23–32.

6. Ширяева С.О., Григорьев А.И., Волкова М.В. Спонтанный капиллярный распад заряженных струй. Ярославль: изд. ЯрГУ, 2007. 340 с.

7. Eggers J., Willermaux E. Physics of liquid jets // Rep. Prog. Phys. 2008. V.71. № 036601. P. 1–79.

8. *Strutt J.W. (Lord Rayleigh).* On the Instability of Cylindrical Fluid Surfaces // Phil. Mag. 1892. V.34. Ser.5. P. 177–180.

9. Basset A.B. Waves and Jets in a Viscous Liquid // Amer. J. Math. 1894. V.16. P. 93-110.

10. *Cloupeau M., Prunet Foch B.* Electrostatic spraying of liquids: main functioning modes // J. Electrostatics. 1990. V.25. P. 165–184.

11. Jaworek A., Krupa A. Classification of the modes of EHD spraying // J. Aerosol Sci. 1999. V.30. № 7. P.873–893.

12. Григорьев А.И. Электростатическая неустойчивость сильно заряженной струи электропроводной жидкости // ЖТФ. 2009. Т.79. Вып.4. С. 36–45.

13. *Григорьев А.И., Ширяева С.О.* Об электростатической неустойчивости объемно заряженной струи диэлектрической жидкости // Электронная обработка материалов. 2009. № 6. С. 35–41

14. Абрамовиц М., Стиган И. Справочник по специальным функциям. М.: Наука, 1979. 830 с.

15. Ширяева С.О., Григорьев А.И., Святченко А.А. Классификация режимов работы электрогидродинамических источников ионов. Препринт ИМ РАН № 25. Ярославль, 1993. 118 с.

16. Hoyt J.W., Taylor G.I. Waves on water jets // J. Fluid Mech. 1977. V. 83. P. 119-127.

Поступила 19.01.10

Summary

On the basis of the analysis of the dispersion equation for nonaxisymmetric capillary waves with azimuthal number equal to two on a surface of the charged cylindrical jet ideal incompressible conductive of environment, is shown, that BJUSHUE of a flow carries destabilizing character. The instability of a nonaxi-symmetric waves with azimuthal number equal to two has threshold character, both on speed, and on size of an electrical charge come on unit of length of a jet.